Tìm giá trị tham số m để phương trình sau có nghiệm lớn nhất nhỏ nhất :
\(x^4+2x^2+2mx+m^2-6m+1=0\)
Tìm m để phương trình : \(x^2-2mx+m^2+6m+10=0\) có 2 nghiệm . Tìm giá trị nhỏ nhất của P=
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2+6m+10\end{matrix}\right.\)
\(P=x^2_1+x^2_2-x_1x_2\\ =\left(x_1+x_2\right)^2-3x_1x_2\\ =\left(2m\right)^2-3\left(m^2+6m+10\right)\\ =4m^2-3m^2-18m-30\\ =m^2-18m-30\\ =\left(m^2-18m+81\right)-111\\ =\left(m-9\right)^2-111\ge-111\)
Dấu "=" xảy ra\(\Leftrightarrow m=9\)
Vậy \(P_{min}-111\Leftrightarrow m=9\)
\(\Delta'=\left(-m\right)^2-\left(m^2-6m-10\right)=m^2-m^2-6m-10=-6m-10\)
Để pt có 2 nghiệm thì\(\Delta'\ge0\Rightarrow-6m-10\ge0\Rightarrow6m+10\le0\Rightarrow m\le-\dfrac{5}{3}\)
4) Tìm a thuộc Z để phương trình sau có nghiệm duy nhất là số nguyên
a^2x+2x=3(a+1-ax)
5) Tìm m để phương trình: (m^2+5)x=2-2mx
có nghiệm duy nhất đạt giá trị lớn nhất
6) Tìm tất cả các số thực a không âm sao cho phương trình: (a^2-4)x=a^2-ma+16 (ẩn x)
có nghiệm duy nhất là số nguyên
Tìm các giá trị của tham số m để phương trình sau x²+ 2mx +7m²–6m=0 a.vô nghiệm b. có nghiệm
Ptr có: `\Delta'=m^2-(7m^2-6m)=m^2-7m^2+6m=-6m^2+6m`
`a)` Ptr vô nghiệm `<=>\Delta' < 0`
`<=>-6m^2+6m < 0`
`<=>m in (-oo;0)uu(1;+oo)`
`b)` Ptr có nghiệm `<=>\Delta' >= 0`
`<=>-6m^2+6m >= 0`
`<=>m in [0;1]`
Cho phương trình : 2 x 2 − 2 m x + m 2 − 2 = 0 1 , với m là tham số.
a) Giải phương trình (1) khi m= 2.
b) Tìm các giá trị của m để phương trình (1) có hai nghiệm x 1 , x 2 sao cho biểu thức A = 2 x 1 x 2 − x 1 − x 2 − 4 đạt giá trị lớn nhất.
a, Với m= 2, ta có 2 x 2 − 4 x + 2 = 0 ⇔ x = 1
b) Phương trình (1) có hai nghiệm x 1 , x 2 khi và chỉ khi Δ ' ≥ 0 ⇔ − 2 ≤ m ≤ 2
Theo Vi-et , ta có: x 1 + x 2 = m 1 x 1 . x 2 = m 2 − 2 2 2
Theo đề bài ta có: A = 2 x 1 x 2 − x 1 − x 2 − 4 = m 2 − 2 − m − 4 = m − 3 m + 2
Do − 2 ≤ m ≤ 2 nên m + 2 ≥ 0 , m − 3 ≤ 0 . Suy ra A = m + 2 − m + 3 = − m 2 + m + 6 = − m − 1 2 2 + 25 4 ≤ 25 4
Vậy MaxA = 25 4 khi m = 1 2 .
Bài 1: Giải và biện luận phương trình sau theo tham số m:
a) (m - 2)x2 - 2mx + m +1 = 0
b) (m - 3)x2 - 2mx + m - 6 = 0
Bài 2: Cho phương trình: (m2 - 4)x2 +2(m + 2)x + 1 = 0, với tham số m:
a) Tìm m để phương trình có nghiệm x
b) Tìm m để phương trình có nghiệm duy nhất
Bài 3: Tìm m để phương trình sau có nghiệm duy nhất. Tìm nghiệm duy nhất đó:
(m - 2)x2 - 2mx + 2m - 3 = 0
Bài 1: Giải và biện luận phương trình sau theo tham số m:
a) (m - 2)x2 - 2mx + m +1 = 0
b) (m - 3)x2 - 2mx + m - 6 = 0
Bài 2: Cho phương trình: (m2 - 4)x2 +2(m + 2)x + 1 = 0, với tham số m:
a) Tìm m để phương trình có nghiệm x
b) Tìm m để phương trình có nghiệm duy nhất
Bài 3: Tìm m để phương trình sau có nghiệm duy nhất. Tìm nghiệm duy nhất đó:
(m - 2)x2 - 2mx + 2m - 3 = 0
Cho phương trình x2 - 2mx + m2 + 3m - 4 = 0 (m là tham số) (1)
a) Tìm m để phương trình (1) có nghiệm.
b) Tìm m để phương trình (1) có 2 nghiệm x1 ; x2 thỏa mãn: A = x12 + x22 đạt giá trị nhỏ nhất.
a) \(\Delta=4m^2-4\left(3m-4\right)=4m^2-12m+16=\left(2m-3\right)^2+7>0\)với mọi m=> pt (1) có nghiệm phân biệt với mọi m
b)áp dụng đ.lí Viét ta có: \(x_1+x_2=2m\); \(x_1.x_2=m^2+3m-4\)
\(x_1^2+x_2^2=\left(x1+x2\right)^2-2x1.x2=4m^2-2\left(m^2+3m-4\right)=4m^2-2m^2-6m+8\)
\(=2\left(m^2+3m-4\right)=2\left[\left(m+\frac{3}{2}\right)^2-4-\frac{9}{4}\right]=2\left[\left(m+\frac{3}{2}\right)^2-\frac{25}{4}\right]\)
A đặt giá trị nhỏ nhất khi m = -3/2
Cho phương trình \(2x^2+2mx+m^2-2=0\). Tìm \(m\) để phương trình có 2 nghiệm \(x_1\), \(x_2\) thỏa mãn \(A=\left|2x_1x_2+x_1+x_2-4\right|\) đạt giá trị lớn nhất.