1 . Cho pt :\(x^2-mx+m-1=0\) . Tìm m để pt có 2 nghiệm \(x_1,x_2\) và biểu thức \(A=\dfrac{2x_1x_2+3}{x^2_1+x^2_2+2\left(x_1x_2+1\right)}\) đạt GTLN
2.Giả sử m là giá trị để phương trình \(x^2-mx+m-2=0\) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\dfrac{x_1^{^2}-2}{x_1-1}.\dfrac{x^2_2-2}{x_2-1}=4\) . Tìm các giá trị của m
Cho phương trình \(x^2-\left(2m+1\right)x-m^2-m=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn \(x_1< x_2\). Tìm mọi giá trị m để : \(S=x_1^2-x_2=-1\).
Cho phương trình \(x^2-2\left(m+1\right)+2m-3=0\)
Tìm các giá trị của m để phương trình có 2 nghiệm phân biệt thoản mãn biểu thức \(P=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\)
đạt GTNN
cho phương trình \(x^2-2\left(m-1\right)x+m-5=0\)
1giải phương trình đã cho với m=2
2 tìm m để phương trình có hai nghiệm \(x_1,x_2\).tìm m để biểu thức \(P=\left|x_1-x_2\right|\)đạt giá trị nhỏ nhất
Cho phương trình: \(x^2+2\left(m+1\right)x+m-4=0\) (m là tham số) (1)
a) Giải phương trình (1) khi \(m=-5\)
b) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=-3\)
Cho phương trình :
\(x^2-2\left(m+2\right)x+m^2+m+3=0\)
a.giải phương trình khi m = 0
b.tìm m để phương trình có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)
Cho phương trình \(x^2-2\left(m-1\right)x-2m=0\). Tìm m để phương trình có 2 nghiệm \(x_1\), \(x_2\) thỏa mãn \(x_1^2+x_1-x_2=5-2m\).
Cho phương trình \(x^2-6x+2m-3=0\). Tìm \(m\) để phương trình có 2 nghiệm \(x_1\), \(x_2\) thỏa mãn \(\left(x_1^2-5x_1+2m-4\right)\left(x_2^2-5x_2+2m-4\right)=2\).
Chi phương trình \(^{x^2-x+m=0}\)(1)
tìm m để phương trình (1) có 2 nghiệm phân biệt \(_{x_1;x_2}\)thỏa mãn
\(\left(x_1^2+x_2+m\right)\)\(\left(x_2^2+x_1+m\right)\)= \(m^2\)-m -1
giúp mik vs ạ :((