Cho 1/a + 1/b +1/c=0.Tính giá trị của biểu thức M=bc/a^2 +ac/b^2 +ab/c^2 với a,b,c khác 0
Lời giải:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$
$\Rightarrow ab+bc+ac=0$
Đặt $ab=x, bc=y, ac=z$ thì $x+y+z=0$
Có:
$M=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}$
$=\frac{b^3c^3+a^3c^3+a^3b^3}{(abc)^2}$
$=\frac{x^3+y^3+z^3}{xyz}=\frac{(x+y)^3-3xy(x+y)+z^3}{xyz}$
$=\frac{(-z)^3-3xy(-z)+z^3}{xyz}$
$+\frac{-z^3+3xyz+z^3}{xyz}=\frac{3xyz}{xyz}=3$
Cho x+y=4 và x2+y2=10. Tính giá trị của biểu thức M=x6+y6
Cho 8x3-32y-32x2y+8x=0 và y khác 0. Tính giá trị của biểu thức M=3x+2y/3x-2y
Cho x2-5x+1=0 . Tính giá trị của biểu thức M=x4+x21/2x2
Giải giúp mình với!!!
Bài 1:
$2xy=(x+y)^2-(x^2+y^2)=4^2-10=6\Rightarrow xy=3$
$M=x^6+y^6=(x^3+y^3)^2-2x^3y^3$
$=[(x+y)^3-3xy(x+y)]^2-2(xy)^3=(4^3-3.3.4)^2-2.3^3=730$
Bài 2:
$8x^3-32y-32x^2y+8x=0$
$\Leftrightarrow (8x^3+8x)-(32y+32x^2y)=0$
$\Leftrightarrow 8x(x^2+1)-32y(1+x^2)=0$
$\Leftrightarrow (8x-32y)(x^2+1)=0$
$\Rightarrow 8x-32y=0$ (do $x^2+1>0$ với mọi $x$)
$\Leftrightarrow x=4y$
Khi đó:
$M=\frac{3.4y+2y}{3.4y-2y}=\frac{14y}{10y}=\frac{14}{10}=\frac{7}{5}$
Bài cuối $x^21$ không rõ. Bạn xem lại.
Cho a, b, c là các số khác 0 thỏa mãn: ab + ac + bc = 0. Tính giá trị biểu thức M = 1/3(ab/c^2 + ac/b^2 + bc/a^2)
Biết a/b=b/c=c/a(a khác 0,b khác 0,d khác 0). tính giá trị biểu thức a^670+b^672+c^673/a^2015
ta có :\(\dfrac{a}{b}\)=\(\dfrac{b}{c}\)=\(\dfrac{c}{a}\)=\(\dfrac{a+b+c}{b+c+a}\)=1
*\(\dfrac{a}{b}\)=1 =>a=b
*\(\dfrac{b}{c}\)=1 =>b=c
*\(\dfrac{c}{a}\)=1 =>c=a
=>a=b=c
=>\(a^{670}\)+\(b^{672}\)+\(c^{673}\)/\(a^{2015}\)=\(a^{2015}\)/\(a^{2015}\)=1
nhớ like nha
Giúp mình với mình cần gấp: cho mnp khác 0, am+bn+cp khác 0 thỏa mãn m=bn+cp,n=am+cp,p=am+bn tính giá trị biểu thức A=1/1+a + 1/1+b +1/1+c
Ta có: \(m+n+p=2ma+2np+2pc\Rightarrow ma+np+pc=\frac{1}{2}\left(m+n+p\right)\)(1)
lại có:
\(\hept{\begin{cases}m=bn+cp\\n=am+cp\\p=am+bn\end{cases}\Rightarrow}\hept{\begin{cases}m-n=bn-am\\n-p=cp-bn\\p-m=am-cp\end{cases}}\Rightarrow\hept{\begin{cases}m\left(a+1\right)=n\left(b+1\right)\\n\left(b+1\right)=p\left(c+1\right)\\p\left(c+1\right)=m\left(a+1\right)\end{cases}}\)
\(\Rightarrow\frac{1}{m\left(a+1\right)}=\frac{1}{n\left(b+1\right)}=\frac{1}{p\left(c+1\right)}=\frac{3}{ma+mb+mc+m+n+p}\)( Dãy tỉ số bằng nhau)
\(=\frac{3}{\frac{1}{2}\left(m+n+p\right)+n+m+p}=\frac{2}{n+m+p}\)
=> \(\frac{1}{a+1}=\frac{2m}{m+n+p}\)
\(\frac{1}{b+1}=\frac{2n}{m+n+p}\)
\(\frac{1}{c+1}=\frac{2p}{m+n+p}\)
=> \(A=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2m+2n+2p}{m+n+p}=2\)
Cho 1/a+1/b+1/c=0. Tính giá trị của biểu thức M=bc/a2 + ca/b2+ab/c2 với a,b,c khác 0
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{3}{a^2b}+\frac{3}{ab^2}+\frac{1}{b^3}=-\frac{1}{c^3}\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{b^3}=-\frac{1}{c^3}\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{-3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{-3}{ab}\cdot\frac{-1}{c}=\frac{3}{abc}\)
Ta có: \(M=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc\cdot\frac{3}{abc}=3\)
Tham khảo thanh này để soạn đề chính xác hơn nha :vvv
a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)
\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)
\(=\dfrac{-1}{\sqrt{x}-2}\)(1)
b) Ta có: \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Thay x=0 vào biểu thức (1), ta được:
\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)
Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)
So sánh giá trị của biểu thức M và N, biết a,b khác 0 và M = (a:a +4018);N=(4020-b:b)
A. M <N
B. M >N
C. M=N
D. Không so sánh được.
Cho a,b,c khác 0 thỏa mãn a+b;b+c;c+a tỉ lệ thuận với 3,4,5. Tính giá trị của biểu thức M = 16a-2b-10c-2017
Lời giải:
Theo bài ra ta có:
$\frac{a+b}{3}=\frac{b+c}{4}=\frac{c+a}{5}=k$
$\Rightarrow a+b=3k; b+c=4k; c+a=5k$
$\Rightarrow a+b+c=(3k+4k+5k):2=6k$
$\Rightarrow a=(a+b+c)-(b+c)=2k; b=(a+b+c)-(a+c)=6k-5k=k; c=(a+b+c)-(a+b)=6k-3k=3k$
$\Rightarrow M=16a-2b-10c-2017=16.2k - 2.k-10.3k-2017=0k-2017=-2017$