a) \(\dfrac{2}{4}\)+\(\dfrac{13}{16}\):\(\dfrac{39}{2}\)
b) \(\dfrac{1}{2}\)x\(\dfrac{3}{5}\)+\(\dfrac{1}{2}\)x\(\dfrac{12}{5}\)
làm đầy đủ theo các bước nhé
Tìm x biết :
a) \(^{\dfrac{4}{9}+x=\dfrac{5}{3}}\)
b)\(\dfrac{3}{4}.x=\dfrac{-1}{2}\)
c) \(\dfrac{3}{7}+\dfrac{5}{7}:x=\dfrac{1}{3}\)
d)\(3\dfrac{1}{4}:\left|2x-\dfrac{5}{12}\right|=\dfrac{39}{16}\)
c.\(\dfrac{3}{7}+\dfrac{5}{7}:x=\dfrac{1}{3}\)
\(\dfrac{5}{7}:x=\dfrac{1}{3}-\dfrac{3}{7}\)
\(\dfrac{5}{7}:x=-\dfrac{2}{21}\)
\(x=\dfrac{5}{7}:-\dfrac{2}{21}\)
\(x=-\dfrac{15}{2}\)
d.\(3\dfrac{1}{4}:\left|2x-\dfrac{5}{12}\right|=\dfrac{39}{16}\)
\(\left|2x-\dfrac{5}{12}\right|=3\dfrac{1}{4}:\dfrac{39}{16}\)
\(\left|2x-\dfrac{5}{12}\right|=\dfrac{4}{3}\)
\(\rightarrow\left[{}\begin{matrix}2x-\dfrac{5}{12}=\dfrac{4}{3}\\2x-\dfrac{4}{12}=-\dfrac{4}{3}\end{matrix}\right.\) \(\rightarrow\left[{}\begin{matrix}2x=\dfrac{7}{4}\\2x=-\dfrac{11}{12}\end{matrix}\right.\) \(\rightarrow\left[{}\begin{matrix}x=\dfrac{7}{8}\\x=-\dfrac{11}{24}\end{matrix}\right.\)
A, \(\dfrac{4}{9}+x=\dfrac{5}{3}\)
\(x\)\(=\dfrac{5}{3}-\dfrac{4}{9}\)
\(x\)\(=\dfrac{11}{9}\)
B,\(\dfrac{3}{4}.x=\dfrac{-1}{2}\)
\(x=\dfrac{-1}{2}:\dfrac{3}{4}\)
\(x=\)\(\dfrac{-2}{3}\)
a)
\(\frac{4}{9} + x = \frac{5}{3}\)
=> \(x = \frac{5}{3}-\frac{4}{9}\)
=> \(x = \) \(\frac{11}{9}\)
Vậy \(x = \dfrac{11}{9}\)
b)
\(\dfrac{3}{4} .x = \dfrac{-1}{2}\)
=> \(x = \dfrac{-1}{2} : \dfrac{3}{4}\)
=> \(x = \dfrac{-2}{3}\)
Vậy \(x = \dfrac{-2}{3}\)
c)
\( \dfrac{3}{7}+ \dfrac{5}{7}:x = \dfrac{1}{3}\)
=> \(\dfrac{5}{7}:x = \dfrac{1}{3}-\) \( \dfrac{3}{7}\)
=> \(\dfrac{5}{7}:x = \dfrac{-2}{21}\)
=> \(x = \dfrac{5}{7}:\dfrac{-2}{21}\)
=> \(x = \dfrac{-15}{2}\)
Vậy \(x = \dfrac{-15}{2}\)
d)
\(3\dfrac{1}{4} : |2x - \dfrac{5}{12} | = \dfrac{39}{16}\)
=> \(\dfrac{13}{4} : |2x - \dfrac{5}{12} | = \dfrac{39}{16}\)
=> \( |2x - \dfrac{5}{12} | =\dfrac{13}{4} : \dfrac{39}{16}\)
=> \(|2x-\dfrac{5}{12} |= \dfrac{4}{3}\)
=> \(\left[\begin{matrix} 2x - \dfrac{5}{12} = \dfrac{4}{3}\\ 2x - \dfrac{5}{12} = \dfrac{4}{3}\end{matrix}\right.\)
=> \(\left[\begin{matrix} 2x = \dfrac{-4}{3}+\dfrac{5}{12}\\ 2x = \dfrac{-4}{3}+\dfrac{5}{12} \end{matrix}\right.\)
=> \(\left[\begin{matrix} 2x = \dfrac{7}{4}\\ 2x = \dfrac{-11}{12} \end{matrix}\right.\)
=> \(\left[\begin{matrix} x = \dfrac{7}{8}\\ x = \dfrac{-11}{24} \end{matrix}\right.\)
Vậy \(x \in \) { \(\dfrac{7}{8} ; \dfrac{-11}{24}\) }
a \(\dfrac{-4}{7}\) - \(\dfrac{5}{13}\) x \(\dfrac{-39}{25}\) + \(\dfrac{-1}{42}\) : \(\dfrac{-5}{6}\)
b \(\dfrac{2}{9}\) x [\(\dfrac{4}{45}\): ( \(\dfrac{1}{5}\) - \(\dfrac{2}{15}\)) + 1\(\dfrac{2}{3}\)] - \(\dfrac{-5}{27}\)
\(a.\dfrac{-4}{7}-\dfrac{5}{13}\times\dfrac{-39}{25}+\dfrac{-1}{42}:\dfrac{-5}{6}\)
\(=\dfrac{-4}{7}+\dfrac{3}{5}+\dfrac{1}{35}\) \(=\dfrac{1}{35}+\dfrac{1}{35}=\dfrac{2}{35}\)
\(b.\dfrac{2}{9}\times\left[\dfrac{4}{5}:\left(\dfrac{1}{5}-\dfrac{2}{15}\right)+1\dfrac{2}{3}\right]-\dfrac{-5}{27}\)
\(=\dfrac{2}{9}\times\left[\dfrac{4}{5}:\dfrac{1}{15}+\dfrac{5}{3}\right]-\dfrac{-5}{27}\)
\(=\dfrac{2}{9}\times\left(12+\dfrac{5}{3}\right)-\dfrac{-5}{27}\)
\(=\dfrac{2}{9}\times\dfrac{41}{3}-\dfrac{-5}{27}=\dfrac{82}{27}-\dfrac{-5}{27}=\dfrac{29}{9}\)
\(\dfrac{1}{5}+\dfrac{2}{11}< \dfrac{x}{55}< \dfrac{2}{5}+\dfrac{1}{5}\) \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}< x\le\dfrac{13}{4}+\dfrac{14}{8}\)
\(\dfrac{1}{4}+\dfrac{5}{12}+\dfrac{-1}{13}< x< \dfrac{7}{5}+\dfrac{2}{10}+\dfrac{1}{2}\) \(\dfrac{79}{15}+\dfrac{7}{5}+\dfrac{-8}{3}\le x\le\dfrac{10}{3}+\dfrac{15}{4}+\dfrac{23}{12}\)
\(\dfrac{1}{5}+\dfrac{2}{11}< \dfrac{x}{55}< \dfrac{2}{5}+\dfrac{1}{5}\)
\(\dfrac{11+10}{55}< \dfrac{x}{55}< \dfrac{3}{5}\)
\(\dfrac{21}{55}< \dfrac{x}{55}< \dfrac{33}{55}\)
Vậy \(x\in\left\{22;23;24;...\right\}\)
a) \(\dfrac{1}{5}+\dfrac{2}{11}< \dfrac{x}{55}< \dfrac{2}{5}+\dfrac{1}{5}\)
\(\dfrac{11}{55}+\dfrac{10}{55}< \dfrac{x}{55}< \dfrac{22}{55}+\dfrac{1}{55}\)
\(\dfrac{21}{55}< \dfrac{x}{55}< \dfrac{23}{55}\)
\(\Rightarrow\) \(x=22\)
b) \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}< x\le\dfrac{13}{4}+\dfrac{14}{8}\)
\(\dfrac{3}{6}+\dfrac{2}{6}+\dfrac{1}{6}< x\le\dfrac{26}{8}+\dfrac{14}{8}\)
\(1< x\le5\)
\(\Rightarrow\) \(x\in\) {\(2;3;4;5\)}
c) \(\dfrac{1}{3}+\dfrac{5}{12}+\dfrac{-1}{13}< x< \dfrac{7}{5}+\dfrac{2}{10}+\dfrac{1}{2}\)
Ko biết làm
d) \(\dfrac{79}{15}+\dfrac{7}{5}+\dfrac{-8}{3}\le x\le\dfrac{10}{3}+\dfrac{15}{4}+\dfrac{23}{12}\)
\(\dfrac{79}{15}+\dfrac{21}{15}+\dfrac{-40}{15}\le x\le\dfrac{40}{12}+\dfrac{45}{12}+\dfrac{23}{12}\)
\(4\le x\le9\)
\(\Rightarrow\) \(x\in\) {\(4;5;6;7;8;9\)}
a) \(\dfrac{12}{16}\) = \(\dfrac{-x}{4}\) = \(\dfrac{21}{y}\) = \(\dfrac{z}{80}\)
b) \(\dfrac{1}{3}\) x + \(\dfrac{2}{5}\) ( x - 1 ) = 0
c) ( 2x - 3 )( 6 - 2x ) = 0
d) \(\dfrac{-2}{3}\) - \(\dfrac{1}{3}\) ( 2x - 5 ) = \(\dfrac{3}{2}\)
e) 2 |\(\dfrac{1}{2}\) x - \(\dfrac{1}{3}\) | - \(\dfrac{1}{4}\)
Giải:
a) \(\dfrac{12}{16}=\dfrac{-x}{4}=\dfrac{21}{y}=\dfrac{z}{80}\)
\(\Rightarrow x=\dfrac{12.-4}{16}=-3\)
\(\Rightarrow y=\dfrac{16.21}{12}=28\)
\(\Rightarrow z=\dfrac{12.80}{16}=60\)
b) \(\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)\) =0
\(\dfrac{1}{3}x+\dfrac{2}{5}x-\dfrac{2}{5}=0\)
\(x.\left(\dfrac{1}{3}+\dfrac{2}{5}\right)\) \(=0+\dfrac{2}{5}\)
\(x.\dfrac{11}{15}\) \(=\dfrac{2}{5}\)
x \(=\dfrac{2}{5}:\dfrac{11}{15}\)
x \(=\dfrac{6}{11}\)
c) (2x-3)(6-2x)=0
⇒2x-3=0 hoặc 6-2x=0
x=3/2 hoặc x=3
d) \(\dfrac{-2}{3}-\dfrac{1}{3}\left(2x-5\right)=\dfrac{3}{2}\)
\(\dfrac{1}{3}\left(2x-5\right)=\dfrac{-2}{3}-\dfrac{3}{2}\)
\(\dfrac{1}{3}\left(2x-5\right)=\dfrac{-13}{6}\)
\(2x-5=\dfrac{-13}{6}:\dfrac{1}{3}\)
\(2x-5=\dfrac{-13}{2}\)
\(2x=\dfrac{-13}{2}+5\)
\(2x=\dfrac{-3}{2}\)
\(x=\dfrac{-3}{2}:2\)
\(x=\dfrac{-3}{4}\)
e) \(2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}\)
\(\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}:2\)
\(\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{1}{8}\) hoặc \(\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-1}{8}\)
\(x=\dfrac{11}{12}\) hoặc \(x=\dfrac{5}{12}\)
\(A.\dfrac{-15}{28}x\dfrac{7}{25}\\ B.\dfrac{-5}{14}x\dfrac{7}{-3}\\ C.\dfrac{-1}{5}-\dfrac{7}{15}x\dfrac{9}{35}\\ D.\dfrac{-3}{4}-(\dfrac{-1}{2})^2\\ E.\dfrac{-4}{5}-\dfrac{-4}{5}x\dfrac{15}{16}\\F.(\dfrac{3}{4}+\dfrac{-7}{2})x(\dfrac{2}{11}+\dfrac{12}{22})\)
a: \(A=\dfrac{-7}{28}\cdot\dfrac{15}{25}=\dfrac{-1}{4}\cdot\dfrac{3}{5}=\dfrac{-3}{20}\)
b: \(B=\dfrac{-5\cdot7}{14\cdot\left(-3\right)}=\dfrac{35}{42}=\dfrac{5}{6}\)
c: \(C=\dfrac{-1}{5}-\dfrac{1}{5}\cdot\dfrac{3}{5}=\dfrac{-1}{5}-\dfrac{3}{25}=\dfrac{-8}{25}\)
d: \(D=\dfrac{-3}{4}-\dfrac{1}{4}=-1\)
e: \(E=\dfrac{-4}{5}\left(1-\dfrac{15}{16}\right)=\dfrac{-4}{5}\cdot\dfrac{1}{16}=\dfrac{-1}{20}\)
f: \(F=\dfrac{6-7}{4}\cdot\dfrac{4+12}{22}=\dfrac{-1}{4}\cdot\dfrac{8}{11}=\dfrac{-2}{11}\)
a)\(\dfrac{2}{3}\)x-1=\(\dfrac{3}{2}\)
b)| 5x - \(\dfrac{1}{2}\)| - \(\dfrac{2}{7}\)= 25%
c)\(\dfrac{x-3}{4}\)=\(\dfrac{16}{x-3}\)
d)\(\dfrac{-8}{13}\)+\(\dfrac{7}{17}+\dfrac{21}{31}\)<x≤\(\dfrac{-9}{14}\)+4+\(\dfrac{5}{-14}\)(xϵZ)
a) Ta có: \(\dfrac{2}{3}x-1=\dfrac{3}{2}\)
\(\Leftrightarrow x\cdot\dfrac{2}{3}=\dfrac{5}{2}\)
hay \(x=\dfrac{5}{2}:\dfrac{2}{3}=\dfrac{5}{2}\cdot\dfrac{3}{2}=\dfrac{15}{4}\)
b) Ta có: \(\left|5x-\dfrac{1}{2}\right|-\dfrac{2}{7}=25\%\)
\(\Leftrightarrow\left|5x-\dfrac{1}{2}\right|=\dfrac{1}{4}+\dfrac{2}{7}=\dfrac{15}{28}\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-\dfrac{1}{2}=\dfrac{15}{28}\\5x-\dfrac{1}{2}=\dfrac{-15}{28}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{29}{28}\\5x=\dfrac{-1}{28}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{29}{140}\\x=\dfrac{-1}{140}\end{matrix}\right.\)
c) Ta có: \(\dfrac{x-3}{4}=\dfrac{16}{x-3}\)
\(\Leftrightarrow\left(x-3\right)^2=64\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=8\\x-3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-5\end{matrix}\right.\)
d) Ta có: \(\dfrac{-8}{13}+\dfrac{7}{17}+\dfrac{21}{31}\le x\le\dfrac{-9}{14}+4-\dfrac{5}{14}\)
\(\Leftrightarrow\dfrac{3246}{6851}\le x\le3\)
\(\Leftrightarrow x\in\left\{1;2;3\right\}\)
Giải các phương trình sau:
\(a.\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)
\(b.\dfrac{7}{x+2}=\dfrac{3}{x-5}\)
\(c.\dfrac{14}{3x-12}-\dfrac{2+x}{x-4}=\dfrac{3}{8-2x}-\dfrac{5}{6}\)
\(d.\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{16}{x^2-1}\)
TK
https://lazi.vn/edu/exercise/giai-phuong-trinh-4x-5-x-1-2-x-x-1-7-x-2-3-x-5
a: \(\Leftrightarrow4x-5=2x-2+x\)
=>4x-5=3x-2
=>x=3(nhận)
b: =>7x-35=3x+6
=>4x=41
hay x=41/4(nhận)
c: \(\Leftrightarrow\dfrac{14}{3\left(x-4\right)}-\dfrac{x+2}{x-4}=\dfrac{-3}{2\left(x-4\right)}-\dfrac{5}{6}\)
\(\Leftrightarrow\dfrac{28}{6\left(x-4\right)}-\dfrac{6\left(x+2\right)}{6\left(x-4\right)}=\dfrac{-9}{6\left(x-4\right)}-\dfrac{5\left(x-4\right)}{6\left(x-4\right)}\)
\(\Leftrightarrow28-6x-12=-9-5x+20\)
=>-6x+16=-5x+11
=>-x=-5
hay x=5(nhận)
d: \(\Leftrightarrow x^2+2x+1-\left(x^2-2x+1\right)=16\)
\(\Leftrightarrow4x=16\)
hay x=4(nhận)
Câu 1: Tìm x, biết:
a)\(x^2-\dfrac{16}{25}=0\) b)\(\dfrac{2}{5}-\left|\dfrac{1}{2}-x\right|=6\)
C2.Tính giá của biểu thức:
a)\(A=1\dfrac{5}{13}-0,25-\left(2\dfrac{5}{9}+\dfrac{18}{13}-\dfrac{1}{4}\right)\)
b)\(\dfrac{\dfrac{3}{5}.7^2-3.5^6+\dfrac{3}{5}.3^9}{\dfrac{3}{4}.7^2-\dfrac{3}{4}.5^7+\dfrac{3}{4}.3^9}\)
a)
x^2-16/25=0
x^2-4^2/5^2=0
=>x-4/5=0
x=0+4/5
x=0/5
bài 1:
a)\(\dfrac{2}{7}+\dfrac{1}{3}=\) b)\(\dfrac{3}{5}-\dfrac{1}{3}=\) c)\(\dfrac{13}{4}:5=\) d)\(\dfrac{6}{23}\times\dfrac{1}{18}=\)
bài 2 :
a) x +\(\dfrac{1}{3}=\dfrac{5}{12}\) b) x :\(\dfrac{7}{4}=\dfrac{2}{5}\)
bài 3 : một tấm bìa hình bình hành có độ dài đáy là 2dm 1cm.Tính diện tích tấm bìa đó biết chiều cao của hình bình hành bằng \(\dfrac{3}{7}\) đọ dài đáy.
bài 4 :
\(\dfrac{2}{3}\times\dfrac{2}{10}+\dfrac{2}{3}\times\dfrac{5}{10}\times\dfrac{2}{3}\) =
giải rõ ràng cho mình nhé
bài 1 :
\(a,\dfrac{2}{7}+\dfrac{1}{3}=\dfrac{6}{21}+\dfrac{7}{21}=\dfrac{13}{21}\)
\(b,\dfrac{3}{5}-\dfrac{1}{3}=\dfrac{9}{15}-\dfrac{5}{15}=\dfrac{4}{15}\)
\(c,\dfrac{13}{4}:5=\dfrac{13}{4}:\dfrac{5}{1}=\dfrac{13}{4}x\dfrac{1}{5}=\dfrac{13}{20}\)
\(d,\dfrac{6}{23}x\dfrac{1}{18}=\dfrac{1}{69}\)
bài 2 :
\(a,x+\dfrac{1}{3}=\dfrac{5}{12}\)
\(x=\dfrac{5}{12}-\dfrac{1}{3}\)
\(x=\dfrac{1}{12}\)
\(b,x:\dfrac{7}{4}=\dfrac{2}{5}\)
\(x=\dfrac{2}{5}x\dfrac{7}{4}\)
\(x=\dfrac{7}{10}\)
bài 3 :
đổi : 2 dm 1cm = 21cm
chiều cao hình bình hành là;
21 x\(\dfrac{3}{7}=\)9(cm)
diện tích hình bình hành là;
21 x 9 =189 (cm2)
đáp số : 189 cm2
bài 4 :
\(\dfrac{2}{3}x\dfrac{2}{10}+\dfrac{2}{3}x\dfrac{5}{10}x\dfrac{3}{3}\)
\(\dfrac{2}{3}x\left(\dfrac{2}{10}+\dfrac{5}{10}\right)x\dfrac{2}{3}\)
=\(\dfrac{2}{3}x1x\dfrac{2}{3}\)
\(=\dfrac{2}{3}x\dfrac{2}{3}\)
=\(\dfrac{4}{9}\)
Bài 1)
a) \(\dfrac{6}{21}+\dfrac{7}{21}=\dfrac{13}{21}\)
b) \(\dfrac{9}{15}-\dfrac{5}{15}=\dfrac{4}{15}\)
c) \(\dfrac{13}{4}x\dfrac{1}{5}=\dfrac{13}{20}\)
d) \(\dfrac{6}{414}=\dfrac{1}{69}\)
Bài 2)
a) \(x=\dfrac{5}{12}-\dfrac{1}{3}\)
\(x=\dfrac{1}{12}\)
b) \(x=\dfrac{2}{5}x\dfrac{7}{4}\)
\(x=\dfrac{7}{10}\)
Bài 3)
2dm 1cm = 21 cm
Chiều cao tấm bìa la
\(21x\dfrac{3}{7}=9\left(cm\right)\)
Diện tích tấm bìa là
\(21x9=189\left(cm2\right)\)
Bài 4)
\(\dfrac{2}{3}x\dfrac{2}{10}+\dfrac{2}{3}x\dfrac{5}{10}x\dfrac{2}{3}=\dfrac{2}{3}x\left(\dfrac{2}{10}+\dfrac{5}{10}\right)x\dfrac{2}{3}=\dfrac{2}{3}x\dfrac{7}{10}x\dfrac{2}{3}=\dfrac{14}{45}\)