Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mang Phạm
Xem chi tiết
nguyễn thị hương giang
1 tháng 4 2022 lúc 17:18

Câu 17.

undefined

Xét tam giác IHJ vuông tại H:

\(sinr=\dfrac{HJ}{IJ}=\dfrac{HJ}{\sqrt{HI^2+HJ^2}}\)

Chiết xuất: \(\dfrac{sini}{sinr}=n\)

\(\Rightarrow\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{HI^2+HJ^2}}{HJ}=\dfrac{4}{3}\)

\(\Rightarrow\dfrac{3}{4}\cdot\dfrac{60^2+HJ^2}{HJ^2}=\dfrac{16}{9}\Rightarrow HJ=51,25cm\)

Độ dài bóng của thành bể tạo ở đáy:

\(HJ+x=85,9cm\)

Chọn A

Mang Phạm
Xem chi tiết
nguyễn thị hương giang
29 tháng 3 2022 lúc 20:25

Góc giới hạn phản xạ toàn phần:

\(sini_{gh}=\dfrac{n_2}{n_1}\)

\(\Rightarrow sini_{gh}=\dfrac{\dfrac{4}{3}}{\sqrt{3}}=\dfrac{4\sqrt{3}}{9}\)

\(\Rightarrow i_{gh}=50,2^o\)

Chọn A

Mang Phạm
Xem chi tiết
nguyễn thị hương giang
29 tháng 3 2022 lúc 20:12

undefined

Xét \(\Delta HIJ\) vuông tại H:

\(sinr=\dfrac{HJ}{IJ}=\dfrac{HJ}{\sqrt{HI^2+HJ^2}}\)

\(\Rightarrow\dfrac{sini}{sinr}=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{HI^2+HJ^2}}{HJ}=n\)

\(\Rightarrow\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{60^2+HJ^2}}{HJ}=\dfrac{4}{3}\)

\(\Rightarrow HJ=51,25cm\)

Độ dài vệt sáng:

\(y=x+HJ=85,9cm\)

Chọn B

Mèo con
Xem chi tiết
nguyễn thị hương giang
29 tháng 3 2022 lúc 20:21

Câu 12.

Ta có: \(\dfrac{sini}{sinr}=n\Rightarrow\dfrac{sin60^o}{sinr}=1,5\)

\(\Rightarrow sinr=\dfrac{\sqrt{3}}{3}\)

\(\Rightarrow r\approx35,3^o\)

Chọn C

Mang Phạm
Xem chi tiết
nguyễn thị hương giang
2 tháng 4 2022 lúc 18:54

Chiết suất tuyệt đối của kim cương:

Áp dụng công thức: \(n=\dfrac{c}{v}\)

\(\Rightarrow\)Tôc độ truyền ánh sáng trong kim cương:

\(v=\dfrac{c}{n}=\dfrac{3\cdot10^8}{2,42}=1,24\cdot10^8\)m/s=124000km/h

Chọn B.

Trúc Phạm
Xem chi tiết
Ami Mizuno
15 tháng 5 2022 lúc 22:09

undefined

Ami Mizuno
15 tháng 5 2022 lúc 22:14

undefined

Trình phượng
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 4 2022 lúc 20:22

23.

Gọi M là trung điểm BC

Trong mp (SAM), từ A kẻ \(AH\perp SM\) (1)

Ta có: \(AM\perp BC\) (trung tuyến đồng thời là đường cao trong tam giác đều)

Lại có \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)

\(\Rightarrow BC\perp\left(SAM\right)\Rightarrow BC\perp SH\)

(1);(2) \(\Rightarrow SH\perp\left(SBC\right)\)

\(\Rightarrow SH=d\left(A;\left(SBC\right)\right)\)

\(AM=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)

Hệ thức lượng trong tam giác vuông SAM:

\(AH=\dfrac{AM.SA}{\sqrt{AM^2+SA^2}}=\dfrac{a\sqrt{66}}{11}\)

undefined

Nguyễn Việt Lâm
14 tháng 4 2022 lúc 20:34

24.

Gọi D, E lần lượt là trung điểm BC, AC

\(\Rightarrow\) DE là đường trung bình tam giác ABC \(\Rightarrow\left\{{}\begin{matrix}DE\perp AC\\DE=\dfrac{1}{2}AB\end{matrix}\right.\)

SBC đều \(\Rightarrow SD\perp BC\Rightarrow SD\perp\left(ABC\right)\)

\(\Rightarrow SD\perp AC\)

\(\Rightarrow AC\perp\left(SDE\right)\Rightarrow\widehat{SED}\) là góc giữa (SAC) và (ABC)

\(AB=BC.cos\widehat{ABC}=a.cos30^0=\dfrac{a\sqrt{3}}{2}\)

\(\Rightarrow DE=\dfrac{1}{2}AB=\dfrac{a\sqrt{3}}{4}\)

\(SD=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều cạnh a)

\(tan\varphi=tan\widehat{SED}=\dfrac{SD}{DE}=2\)

undefined

Trúc Phạm
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 4 2022 lúc 22:05

\(\lim\limits_{x\rightarrow3}f\left(x\right)=\lim\limits_{x\rightarrow3}\dfrac{\sqrt{x^2+7}-4}{2x-6}=\lim\limits_{x\rightarrow3}\dfrac{x^2-9}{2\left(x-3\right)\left(\sqrt{x^2+7}+4\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x+3\right)}{2\left(x-3\right)\left(\sqrt{x^2+7}+4\right)}=\lim\limits_{x\rightarrow3}\dfrac{x+3}{2\left(\sqrt{x^2+7}+4\right)}\)

\(=\dfrac{6}{2\left(4+4\right)}=\dfrac{3}{8}\)

\(f\left(3\right)=1-2m\)

Hàm liên tục trên R khi: 

\(1-2m=\dfrac{3}{8}\Rightarrow m=\dfrac{5}{16}\in\left(0;1\right)\)

Thanh Nguyễn
Xem chi tiết