23.
Gọi M là trung điểm BC
Trong mp (SAM), từ A kẻ \(AH\perp SM\) (1)
Ta có: \(AM\perp BC\) (trung tuyến đồng thời là đường cao trong tam giác đều)
Lại có \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)
\(\Rightarrow BC\perp\left(SAM\right)\Rightarrow BC\perp SH\)
(1);(2) \(\Rightarrow SH\perp\left(SBC\right)\)
\(\Rightarrow SH=d\left(A;\left(SBC\right)\right)\)
\(AM=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)
Hệ thức lượng trong tam giác vuông SAM:
\(AH=\dfrac{AM.SA}{\sqrt{AM^2+SA^2}}=\dfrac{a\sqrt{66}}{11}\)
24.
Gọi D, E lần lượt là trung điểm BC, AC
\(\Rightarrow\) DE là đường trung bình tam giác ABC \(\Rightarrow\left\{{}\begin{matrix}DE\perp AC\\DE=\dfrac{1}{2}AB\end{matrix}\right.\)
SBC đều \(\Rightarrow SD\perp BC\Rightarrow SD\perp\left(ABC\right)\)
\(\Rightarrow SD\perp AC\)
\(\Rightarrow AC\perp\left(SDE\right)\Rightarrow\widehat{SED}\) là góc giữa (SAC) và (ABC)
\(AB=BC.cos\widehat{ABC}=a.cos30^0=\dfrac{a\sqrt{3}}{2}\)
\(\Rightarrow DE=\dfrac{1}{2}AB=\dfrac{a\sqrt{3}}{4}\)
\(SD=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều cạnh a)
\(tan\varphi=tan\widehat{SED}=\dfrac{SD}{DE}=2\)