cho dãy số \(U_n=\frac{\left(2+\sqrt{3}\right)^n-\left(2-\sqrt{3}\right)^n}{2\sqrt{2}}\)
tìm tất cả các số nguyên n để Un chia hết cho 3
cho dãy số(un) được xác định bởi \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\sqrt{\dfrac{n+1}{n}}\left(u_n+3\right)-3\end{matrix}\right.\) ,n=1,2,...Tìm công thức tổng quát của dãy số (un) và tính \(\lim\limits\dfrac{u_n}{\sqrt{n}}\) .
\(u_2=\sqrt{2}\left(2+3\right)-3=5\sqrt{2}-3\)
\(u_3=\sqrt{\dfrac{3}{2}}.5\sqrt{2}-3=5\sqrt{3}-3\)
\(u_4=\sqrt{\dfrac{4}{3}}.5\sqrt{3}-3=5\sqrt{4}-3\)
....
\(\Rightarrow u_n=5\sqrt{n}-3\)
\(\Rightarrow\lim\limits\dfrac{u_n}{\sqrt{n}}=\lim\limits\dfrac{5\sqrt{n}-3}{\sqrt{n}}=5\)
Bài 1: Cho dãy (Un): \(\left\{{}\begin{matrix}U_1=1\\U_{n+1}=2U_n+3\end{matrix}\right.\)
a) Tìm: U5
b) Tìm số hạng tổng quát của dãy (Un)
Bài 2: Xét tính tăng, giảm
a) \(U_n=\dfrac{\sqrt{n+1}-\sqrt{n}}{n}\)
b) \(\left(U_n\right):\left\{{}\begin{matrix}U_n=3\\U_{n+1}=\sqrt{1+U_n^2}\end{matrix}\right.\)
Bài 3: Tìm a để (Un): \(U_n=\dfrac{an+2}{n+1}\) là dãy tăng
Bài 4: Xét tính bị chặn:
a) \(U_n=\dfrac{n^2+1}{2n^2-3}\)
b) \(U_n=\dfrac{n-1}{\sqrt{n^2+1}}\)
Bài 5: Cho dãy: \(\left\{{}\begin{matrix}U_1=\sqrt{2}\\U_n+1=\sqrt{U_n+2}\end{matrix}\right.\), (Un)
Chứng minh rằng: (U1) tăng, bị chặn trên bởi 2
1:
a: \(u_2=2\cdot1+3=5;u_3=2\cdot5+3=13;u_4=2\cdot13+3=29;\)
\(u_5=2\cdot29+3=61\)
b: \(u_2=u_1+2^2\)
\(u_3=u_2+2^3\)
\(u_4=u_3+2^4\)
\(u_5=u_4+2^5\)
Do đó: \(u_n=u_{n-1}+2^n\)
Cho dãy số (Un) được xác định như sau: \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\sqrt{u_n.\left(u_n+1\right).\left(u_n+2\right).\left(u_n+3\right)+1}\end{matrix}\right.,\forall n\in N\). Đặt \(v_n=\sum\limits^n_{i=1}\dfrac{1}{u_i+2}\). Tính \(v_{2020}\)
Tìm giới hạn lim un
a. \(u_n=\left(2-3n\right)^4\left(n+1\right)^3\)
b.\(u_n=\sqrt[3]{n+4}-\sqrt[3]{n+1}\)
c.\(u_n=\sqrt[3]{8n^3+3n^2+4}-2n+6\)
d. \(\sqrt[3]{8n^3+3n^2-2}+\sqrt[3]{5n^2-8n^3}\)
Help me ! Gợi ý cho mik cx đc ạ . Tks mng
\(\lim\limits\left(2-3n\right)^4\left(n+1\right)^3=\lim n^7\left(3-\dfrac{2}{n}\right)^4\left(1+\dfrac{1}{n}\right)^3=+\infty\)
\(\lim\left(\sqrt[3]{n+4}-\sqrt[3]{n+1}\right)=\lim\dfrac{3}{\sqrt[3]{\left(n+4\right)^2}+\sqrt[3]{\left(n+4\right)\left(n+1\right)}+\sqrt[3]{\left(n+1\right)^2}}=0\)
\(\lim\left(\sqrt[3]{8n^3+3n^2+4}-2n+6\right)=\lim\dfrac{8n^3+3n^2+4-\left(2n-6\right)^3}{\sqrt[3]{\left(8n^3+3n^2+4\right)^2}+\left(2n-6\right)\sqrt[3]{8n^3+3n^2+4}+\left(2n-6\right)^2}\)
\(=\lim\dfrac{75n^2-216n+220}{\sqrt[3]{\left(8n^3+3n^2+4\right)^2}+\left(2n-6\right)\sqrt[3]{8n^3+3n^2+4}+\left(2n-6\right)^2}\)
\(=\lim\dfrac{75-\dfrac{216}{n}+\dfrac{220}{n^2}}{\sqrt[3]{\left(8+\dfrac{3}{n}+\dfrac{4}{n^3}\right)^2}+\left(2-\dfrac{6}{n}\right)\sqrt[3]{8+\dfrac{3}{n}+\dfrac{4}{n^3}}+\left(2-\dfrac{6}{n}\right)^2}\)
\(=\dfrac{75}{\sqrt[3]{8^2}+2.\sqrt[3]{8}+2^2}=...\)
d.
\(\lim\left(\sqrt[3]{8n^3+3n^2-2}+\sqrt[3]{5n^2-8n^3}\right)\)
\(=\lim\left(\sqrt[3]{8n^3+3n^2-2}-\sqrt[3]{8n^3-5n^2}\right)\)
\(=\lim\dfrac{8n^3+3n^2-2-\left(8n^3-5n^2\right)}{\sqrt[3]{\left(8n^3+3n^2-2\right)^2}+\sqrt[3]{\left(8n^3+3n^2-2\right)\left(8n^3-5n^2\right)}+\sqrt[3]{8n^3-5n^2}}\)
\(=\lim\dfrac{8n^2-2}{\sqrt[3]{\left(8n^3+3n^2-2\right)^2}+\sqrt[3]{\left(8n^3+3n^2-2\right)\left(8n^3-5n^2\right)}+\sqrt[3]{8n^3-5n^2}}\)
\(=lim\dfrac{8-\dfrac{2}{n^2}}{\sqrt[3]{\left(8+\dfrac{3}{n}-\dfrac{2}{n^3}\right)^2}+\sqrt[3]{\left(8+\dfrac{3}{n}-\dfrac{2}{n^3}\right)\left(8-\dfrac{5}{n}\right)}+\sqrt[3]{\left(8-\dfrac{5}{n}\right)^2}}\)
\(=\dfrac{8}{\sqrt[3]{8^2}+\sqrt[3]{8.8}+\sqrt[3]{8^2}}=...\)
Cho dãy số Un được xát định bởi công thức
\(Un=\frac{\left(3+\sqrt{2}\right)^n-\left(3-\sqrt{2}\right)^n}{2\sqrt{2}}\)
a) Tìm công thức Un+2 theo Un+1 và Un
b)tính tổng 20 chữ số hạng đầu tiên của dãy
Xét tính tăng , giảm của các dãy số \(\left(u_n\right)\) biết :
\(a,u_n=\dfrac{\left(-1\right)^n}{n+2}\)
\(b,u_n=\sqrt{n+3}-\sqrt{n}\)
Xét tính tăng , giảm của các dãy số \(\left(u_n\right)\) biết :
\(a,u_n=\dfrac{\left(-1\right)^n}{n+2}\)
\(b,u_n=\sqrt{n+3}-\sqrt{n}\)
Cho dãy số \(U_n=\left(1+\sqrt{2}\right)^n+\left(1-\sqrt{2}\right)^n+1\), với \(n\) là số nguyên dương. Tìm công thức tổng quát tính \(U_{n+1}\) theo \(U_n\) và \(U_{n-1}\) với \(n\ge2\).
Ta tính một vài giá trị đầu của Un:
\(U_1=3;U_2=7;U_3=15;U_4=35;U_5=83\)
Đặt \(U_{n+1}=aU_n+bU_{n-1}+c\) (*)
Khi đó thay lần lượt \(n=2,n=3,n=4\) vào (*), ta có:
\(\left\{{}\begin{matrix}15=7a+3b+c\\35=15a+7b+c\\83=35a+15b+c\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\\c=-2\end{matrix}\right.\)
Do đó \(U_{n+1}=2U_n+U_{n-1}-2\)
Cho dãy số thực (un) xác định bởi : \(\left\{{}\begin{matrix}u_1=\dfrac{3}{2}\\u_n=\sqrt{3u_{n-1}-2},\forall n\ge2\end{matrix}\right.\)
Chứng minh dãy số (un) có giới hạn hữu hạn khi \(n\rightarrow\infty\)
Ta sẽ chứng minh dãy bị chặn trên bởi 2
Thật vậy, với \(n=1;2\) thỏa mãn
Giả sử điều đó cũng đúng với \(n=k\) , tức \(u_k< 2\)
Ta cần chứng minh \(u_{k+1}< 2\)
Ta có: \(u_{k+1}=\sqrt{3u_k-2}< \sqrt{3.2-2}=2\) (đpcm)
Tương tự, ta cũng quy nạp được dễ dàng \(u_n>1\)
Mặt khác: \(u_n-u_{n-1}=\sqrt{3u_{n-1}-2}-u_{n-1}=\dfrac{3u_{n-1}-2-u_{n-1}^2}{\sqrt{3u_{n-1}-2}+u_{n-1}}\)
\(=\dfrac{\left(2-u_{n-1}\right)\left(u_{n-1}-1\right)}{\sqrt{3u_{n-1}-2}+u_{n-1}}>0\)
\(\Rightarrow u_n>u_{n-1}\Rightarrow\) dãy tăng
Dãy tăng và bị chặn trên nên có giới hạn hữu hạn.
Gọi giới hạn đó là k thì:
\(k=\sqrt{3k-2}\Leftrightarrow k=2\)