Bài 1: Giới hạn của dãy số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tâm Cao

Cho dãy số thực (un) xác định bởi : \(\left\{{}\begin{matrix}u_1=\dfrac{3}{2}\\u_n=\sqrt{3u_{n-1}-2},\forall n\ge2\end{matrix}\right.\)

Chứng minh dãy số (un) có giới hạn hữu hạn khi \(n\rightarrow\infty\)

Nguyễn Việt Lâm
7 tháng 2 2021 lúc 6:39

Ta sẽ chứng minh dãy bị chặn trên bởi 2

Thật vậy, với \(n=1;2\) thỏa mãn

Giả sử điều đó cũng đúng với \(n=k\) , tức \(u_k< 2\)

Ta cần chứng minh \(u_{k+1}< 2\)

Ta có: \(u_{k+1}=\sqrt{3u_k-2}< \sqrt{3.2-2}=2\) (đpcm)

Tương tự, ta cũng quy nạp được dễ dàng \(u_n>1\)

Mặt khác: \(u_n-u_{n-1}=\sqrt{3u_{n-1}-2}-u_{n-1}=\dfrac{3u_{n-1}-2-u_{n-1}^2}{\sqrt{3u_{n-1}-2}+u_{n-1}}\)

\(=\dfrac{\left(2-u_{n-1}\right)\left(u_{n-1}-1\right)}{\sqrt{3u_{n-1}-2}+u_{n-1}}>0\)

\(\Rightarrow u_n>u_{n-1}\Rightarrow\) dãy tăng

Dãy tăng và bị chặn trên nên có giới hạn hữu hạn.

Gọi giới hạn đó là k thì:

\(k=\sqrt{3k-2}\Leftrightarrow k=2\)


Các câu hỏi tương tự
Tâm Cao
Xem chi tiết
Tâm Cao
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Tien Do
Xem chi tiết
Tung Dao Manh
Xem chi tiết
Tên Ai Đó
Xem chi tiết
Trinh Phương
Xem chi tiết
Trúc Lê
Xem chi tiết
Trần Minh
Xem chi tiết