Tìm n
(1/3)2.27n=3n
Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)
Tìm các giới hạn sau:
\(a,lim\dfrac{2n^2+1}{3n^3-3n+3}\)
\(b,lim\dfrac{-3n^3+1}{2n+5}\)
\(c,lim\dfrac{n^3-2n+1}{-3n-4}\)
\(a,lim\dfrac{2n^2+1}{3n^3-3n+3}\)
\(=lim\dfrac{\dfrac{2}{n}+\dfrac{1}{n^3}}{3-\dfrac{3}{n^2}+\dfrac{3}{n^3}}=0\)
\(\lim\dfrac{-3n^3+1}{2n+5}=\lim\dfrac{-3n^2+\dfrac{1}{n}}{2+\dfrac{5}{n}}=\dfrac{-\infty}{2}=-\infty\)
\(\lim\dfrac{n^3-2n+1}{-3n-4}=\lim\dfrac{n^2-2+\dfrac{1}{n}}{-3-\dfrac{4}{n}}=\dfrac{+\infty}{-3}=-\infty\)
1, tìm số tự nhiên N sao cho 3n+7 chia hết cho n+1
2, tìm số nguyên n sao cho 2n+ 3/3n+
\(1,3n+7=3n+3+4=3\left(n+1\right)+4⋮\left(n+1\right)\\ =>n+1\inƯ\left(4\right)\\ Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\\ TH1,n+1=1\\ =>n=0\\ TH2,n+1=-1\\ =>n=-2\\ TH3,n+1=2\\ =>n=1\\ TH3,n+1=-2\\ =>n=-3\\ TH4,n+1=4\\ =>n=3\\ TH5,n+1=-4\\ =>n=-5\)
tìm số nguyên n để n^3 -3n^2 -3n -1 chia hết cho n^2 +n+1
Tìm n để:3n^3+3n-1 chia hết cho n+2
ta có: 3n^3+3n-1=(n+2)(3n^2-6n+15)+29 chia hết cho n+2
=>29 cha hết cho n+2
=>n+2 là ước của 29
=>n+2 \(\in(1;-1;29;-29)\)
<=>n\(\in(-1;-3;27;-31)\)
vậy n\(\in(-1;-3;27;-31)\)
Tìm các giới hạn sau:
\(a,lim\dfrac{\sqrt[3]{n^3+1}-3n}{\sqrt{n^2+n+1}}\)
\(b,lim\dfrac{n\sqrt{1+2+3+...+2n}}{3n^2+n-2}\)
\(\lim\dfrac{n\sqrt{1+2+...+2n}}{3n^2+n-2}=\lim\dfrac{n\sqrt{\dfrac{2n\left(2n+1\right)}{2}}}{3n^2+n-2}=\lim\dfrac{\sqrt{2+\dfrac{1}{n}}}{3+\dfrac{1}{n}-\dfrac{2}{n^2}}=\dfrac{\sqrt{2}}{3}\)
Tìm các giới hạn sau:
\(a,\dfrac{4n^5-3n^2}{\left(3n^2-2\right)\left(1-4n^3\right)}\)
\(b,\dfrac{\left(n^2+1\right)\left(n-10\right)^2}{\left(n+1\right)\left(3n-3\right)^3}\)
\(b,lim\dfrac{\left(n^2+1\right)\left(n-10\right)^2}{\left(n+1\right)\left(3n-3\right)^3}\)
\(=lim\dfrac{\left(1+\dfrac{1}{n^2}\right)\left(\dfrac{1}{n}-\dfrac{10}{n^2}\right)^2}{\left(1+\dfrac{1}{n}\right)\left(\dfrac{3}{n^2}-\dfrac{3}{n^3}\right)}=0\)
\(a,lim\dfrac{4n^5-3n^2}{\left(3n^2-2\right)\left(1-4n^3\right)}\)
\(=lim\dfrac{4-\dfrac{3}{n^3}}{\left(3-\dfrac{2}{n^2}\right)\left(\dfrac{1}{n^3}-4\right)}\)
\(=\dfrac{4-0}{\left(3-0\right)\left(0-4\right)}=\dfrac{4}{-12}=-\dfrac{1}{3}\)
\(\lim\dfrac{\left(n^2+1\right)\left(n-10\right)^2}{\left(n+1\right)\left(3n-3\right)^3}=\lim\dfrac{\left(1+\dfrac{1}{n^2}\right)\left(1-\dfrac{10}{n}\right)^2}{\left(1+\dfrac{1}{n}\right)\left(3-\dfrac{3}{n}\right)^3}=\dfrac{1.1^2}{1.3}=\dfrac{1}{3}\)
đặt \(a=lim\dfrac{3n^3-2n+1}{4n^4+2n+1}\). tìm \(lim\dfrac{an^3-\left(a+2\right)n^2+1}{4an^3-n^2+3n+3}\)
\(a=\lim\limits\dfrac{3n^3-2n+1}{4n^4+2n+1}=\lim\limits\dfrac{\dfrac{3n^3}{n^4}-\dfrac{2n}{n^4}+\dfrac{1}{n^4}}{\dfrac{4n^4}{n^4}+\dfrac{2n}{n^4}+\dfrac{1}{n^4}}=0\)
\(\Rightarrow\lim\limits\dfrac{-2n^2+1}{-n^2+3n+3}=\lim\limits\dfrac{-\dfrac{2n^2}{n^2}+\dfrac{1}{n^2}}{-\dfrac{n^2}{n^2}+\dfrac{3n}{n^2}+\dfrac{3}{n^2}}=-\dfrac{2}{-1}=2\)
Tìm n ∈ N để
a) \(\dfrac{2n^4-3n^2+n-2}{n-1}\) ∈ N (n≠1)
b) \(\dfrac{-3n^3+2n^2-n-2}{n+2}\) ∈ Z (n≠-2)
a: \(\Leftrightarrow2n^4-2n^3-n^3+n^2-n^2+n-2⋮n-1\)
\(\Leftrightarrow n-1\in\left\{-1;1;2\right\}\)
hay \(n\in\left\{0;2;3\right\}\)
Tìm các giới hạn sau:
\(a,\dfrac{-3n^3+1}{2n+5}\)
\(b,\dfrac{n^3-2n+1}{-3n-4}\)
\(a,lim\dfrac{-3n^3+1}{2n+5}\)
\(=lim\dfrac{-3+\dfrac{1}{n^3}}{2n^2+\dfrac{5}{n^3}}=\dfrac{-3}{2n^2}=\dfrac{1}{n^2}\times\dfrac{-3}{2}=\)-∞
\(\lim\dfrac{n^3-2n+1}{-3n-4}=\lim\dfrac{n^2-2+\dfrac{1}{n}}{-3-\dfrac{4}{n}}=\dfrac{+\infty}{-3}=-\infty\)