\(\left(\frac{1}{3}\right)^2\cdot27^n=3^n\)
\(\left(\frac{1}{3}\right)^2=3^n^{-3n}\)
\(\left(\frac{1}{3}\right)^2=3^{-2n}\)
\(\left(\frac{1}{3}\right)^2=\left(3^{-n}\right)^2\)
\(\frac{1}{3}=3^{-n}\)
\(n=1\)
\(\left(\frac{1}{3}\right)^2.27^n=3^n\)
\(\Leftrightarrow\left(\frac{1}{3}\right)^2=\left(\frac{3}{27}\right)^n\)
\(\Leftrightarrow\frac{1}{9}=\left(\frac{1}{9}\right)^n\)
\(\Leftrightarrow n=1\)