Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Khánh Vân
Xem chi tiết
Nguyễn Quang Minh
31 tháng 3 2023 lúc 21:11

Akai Haruma
13 tháng 5 2023 lúc 23:45

Lời giải:
$A-1=4+4^2+4^3+...+4^{2020}+4^{2021}$
$4(A-1)=4^2+4^3+4^4+....+4^{2021}+4^{2022}$

$\Rightarrow 4(A-1)-(A-1)=4^{2022}-4$

$3(A-1)=4^{2022}-4$

$\Rightarrow 3A+1=4^{2022}\vdots 4^{2021}$ 

 

Long
Xem chi tiết
Lấp La Lấp Lánh
12 tháng 11 2021 lúc 9:21

\(A=\left(3^2+3^3\right)+3^2\left(3^2+3^3\right)+...+3^{2018}\left(3^2+3^3\right)\)

\(=36+3^2.36+...+3^{2018}.36=36\left(1+3^2+...+3^{2018}\right)⋮36\)

кαвαиє ѕнιяσ
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 11 2021 lúc 8:45

\(A=\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{2020}+3^{2021}\right)\\ A=\left(3^2+3^3\right)+3^2\left(3^2+3^3\right)+...+3^{2018}\left(3^2+3^3\right)\\ A=\left(3^2+3^3\right)\left(1+3^2+...+3^{2018}\right)\\ A=36\left(1+3^2+...+3^{2018}\right)⋮36\)

Nguyễn Văn Vi Duy Hưng
Xem chi tiết
Akai Haruma
29 tháng 6 2023 lúc 19:02

Lời giải:

Xét $A=4^{2021}+4^{2020}+...+4^2+4+1$

$4A=4^{2022}+4^{2021}+...+4^3+4^2+4$
$\Rightarrow 4A-A=4^{2022}-1$

$\Rightarrow 3A=4^{2022}-1$

$\Rightarrow M=75A+25=25(4^{2022}-1)+25=25.4^{2022}=100.4^{2021}\vdots 100$

Ta có đpcm.

nguyen thi huong giang
Xem chi tiết
Dương Q. Trọng
Xem chi tiết
Kiều Vũ Linh
1 tháng 11 2021 lúc 13:05

Em xem lại đề nhé! Có xuất hiện dấu + không? Hay chỉ là dấu x

Bà ngoại nghèo khó
1 tháng 11 2021 lúc 13:15

A= 4+4\(^2\)+4\(^3\)+4\(^4\)+...+4\(^{2021}\)+4\(^{2022}\)⋮5

A=(4+4\(^2\))+(4\(^3\)+4\(^4\))+...+(4\(^{2021}\)+4\(^{2022}\))⋮5

A=4(1+4)+4\(^2\)(1+4)+...+4\(^{2021}\)(1+4)⋮5

A=4.5+4\(^2\).5+...+4\(^{2021}\).5⋮5

A=(4+4\(^2\)+...+4\(^{2021}\)).5⋮5

Vậy A⋮5

Kiều Vũ Linh
1 tháng 11 2021 lúc 13:24

\(A=4+4^2+4^3+4^4+...+4^{2021}+4^{2022}\)

\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2021}+4^{2022}\right)\)

\(=4.\left(1+4\right)+4^3.\left(1+4\right)+...+4^{2021}.\left(1+4\right)\)

\(=4.5+4^3.5+...+4^{2021}.5\)

\(=5.\left(4+4^3+...+4^{2021}\right)⋮5\)

Vậy \(A⋮5\)

Hà Anh Nguyễn
Xem chi tiết
Kiều Vũ Linh
4 tháng 11 2023 lúc 10:56

\(C=4+4^2+4^3+...+4^{2021}+4^{2022}\)

\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2021}+4^{2022}\right)\)

\(=4.\left(1+4\right)+4^3.\left(1+4\right)+...+4^{2021}.\left(1+4\right)\)

\(=4.5+4^3.5+...+4^{2021}.5\)

\(=5.\left(4+4^3+...+4^{2021}\right)⋮5\)

Vậy \(C⋮5\)

_png.vna_
Xem chi tiết
biooo
5 tháng 11 2023 lúc 20:39

tui lớp 8 ko bt làm :)

 

nguyễn đạt nhân
5 tháng 11 2023 lúc 21:01

hảo hán

Nguyễn Lê Phước Thịnh
6 tháng 11 2023 lúc 13:36

Đặt \(A=75\left(4^{2023}+4^{2022}+...+4^2+4+1\right)+25\)

Đặt \(B=4^{2023}+4^{2022}+...+4^2+4+1\)

=>\(4B=4^{2024}+4^{2023}+...+4^3+4^2+4\)

=>\(4B-B=4^{2024}+4^{2023}+...+4^3+4^2+4-4^{2023}-4^{2022}-...-4^2-4-1\)

=>\(3B=4^{2024}-1\)

=>\(B=\dfrac{4^{2024}-1}{3}\)

\(A=75\left(4^{2023}+4^{2022}+...+4^2+4+1\right)+25\)

\(=75\cdot\dfrac{4^{2024}-1}{3}+25\)

\(=25\cdot\left(4^{2024}-1\right)+25\)

\(=25\cdot4^{2024}\)

\(=25\cdot4\cdot4^{2023}=100\cdot4^{2023}⋮100\)

kien nguyen trung
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 1 2022 lúc 22:58

\(E=25\left[3\cdot\left(5+4^2+4^3+...+4^{2021}\right)+1\right]\)

\(=25\cdot\left(4^2+4^2+4^3+...+4^{2021}\right)\)

\(=25\cdot4^{2022}⋮4^{2022}\)