x . x + x = 2y + 1
Rut gon:
A=(x-2)^2-(2x+1)^2
B=(x-2y)^2-(x-2y) .(2y+x)
C=(x+1)^3-(x-2)^3
D=(x-1)^2-2(x-1)(x+1)+(x+1)^2
E=(x+2y)^2+2(x+2y)(x-2y)+(2y-x)
G=(2x+1)^3-(2x-1)
Giai het ho minh nha! Minh dang can gap
\(A=\left(x-2\right)^2-\left(2x+1\right)^2=x^2-4x+4-4x^2-4x-1=-3x^2+3=-3\left(x^2-1\right)\)
\(=-3\left(x-1\right)\left(x+1\right)\)
\(B=\left(x-2y\right)^2-\left(x-2y\right)\left(x+2y\right)=\left(x-2y\right)\left(x-2y-x-2y\right)=-4y\left(x-2y\right)\)
\(C=\left(x+1\right)^3-\left(x-2\right)^3=\left(x^3+3x^2+3x+1\right)-\left(x^3-6x^2+12x-8\right)\)
\(=x^3+3x^2+3x+1-x^3+6x^2-12x+8=9x^2-9x+9=9\left(x^2-x+1\right)\)
\(D=\left(x-1\right)^2-2\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2=\left(x-1-x-1\right)^2=-2^2=4\)
\(E=\left(x+2y\right)^2+2\left(x+2y\right)\left(x-2y\right)+2y-x=x^2+4xy+4y^2+2\left(x^2-4y^2\right)+2y-x\)
\(=x^2+4xy+4y^2+2x^2-8y^2+2y-x=3x^2-4y^2+4xy+2y-x\)
\(G=\left(2x+1\right)^3-\left(2x-1\right)=8x^3+12x^2+6x+1-2x+1=8x^3+12x^2+4x+2\)
\(=2\left(4x^3+6x^2+2x+1\right)=2\left(4x\left(x+1\right)^2+1\right)\)
tính tổng S = x + 2y + 3z biết rằng 1/(x+ 2y) + 1/(2y+3z)+1/(x+3z)= 12x/(2y+3z)+24y/(x+3z)+ 36z/(x+2y)=2016
Chứng minh đẳng thức:
(\(\dfrac{x}{x+2y}\) - \(\dfrac{x+2y}{2y}\))(\(\dfrac{x}{x-2y}\) - 1 + \(\dfrac{8y^3}{8y^3-x^3}\) ) = \(\dfrac{x}{2y-x}\)
\(\left(\dfrac{x}{x+2y}-\dfrac{x+2y}{2y}\right)\left(\dfrac{x}{x-2y}-1+\dfrac{8y^3}{8y^3-x^3}\right)=\dfrac{2xy-\left(x+2y\right)^2}{2y\left(x+2y\right)}\left(\dfrac{2y}{x-2y}+\dfrac{8y^3}{\left(2y-x\right)\left(4y^2+2yx+x^2\right)}\right)=\dfrac{-\left(x^2+2xy+4y^2\right)}{2y\left(x+2y\right)}\cdot\dfrac{2y\left(4y^2+2yx+x^2\right)-8y^3}{\left(x-2y\right)\left(x^2+2xy+4y^2\right)}=\dfrac{-\left(x^2+2xy+4y^2\right)2y\left(4y^2+2xy+x^2-4y^2\right)}{2y\left(x+2y\right)\left(x-2y\right)\left(x^2+2x+4y^2\right)}=\dfrac{-\left(x^2+2xy\right)}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{x}{2y-x}\)
Rut gon:
A=(x-2)^2-(2x+1)^2
B=(x-2y)^2-(x-2y) .(2y+x)
C=(x+1)^3-(x-2)^3
D=(x-1)^2-2(x-1)(x+1)+(x+1)^2
E=(x+2y)^2+2(x+2y)(x-2y)+(2y-x)
G=(2x+1)^3-(2x-1)
Giai het ho minh nha! Cừ từ từ mik rảnh lắm!!!!!
A = ( x - 2 )2 - ( 2x + 1 )2
A = x2 - 4x + 4 - 4x2 + 4x + 1
A = - 3x2 + 5
B = ( x - 2y )2 - ( x - 2y ) . ( 2y + x )
B = x2 - 4xy + 4y2 - ( 2xy + x2 - 4y2 - 2xy )
B = x2 - 4xy + 4y2 - 2xy - x2 + 4y2 + 2xy
B = 8y2 - 4xy
Tính
(x/x+y-x+2y/2y).(x/x-2y-1+8y2/8y3-x3
(3x-1)tất cả mũ 2 -9(x-1)(x+1)
(2x+3) (2x-3)-(2x+1) tất cả mũ 2 – (x-1)
2(x-2y)(x+2y)+(x-2y) tất cả mũ 2+ (x+2y) tất cả mũ 2
Rút gọn hả bạn ?
( 3x - 1 )2 - 9( x - 1 )( x + 1 )
= 9x2 - 6x + 1 - 9( x2 - 1 )
= 9x2 - 6x + 1 - 9x2 + 9
= 10 - 6x
( 2x + 3 )( 2x - 3 ) - ( 2x - 1 )2 - ( x - 1 )
= 4x2 - 9 - ( 4x2 - 4x + 1 ) - x + 1
= 4x2 - x - 8 - 4x2 + 4x - 1
= 3x - 9
2( x - 2y )( x + 2y ) + ( x - 2y )2 + ( x + 2y )2
= [ ( x + 2y ) + ( x - 2y ) ]2
= [ x + 2y + x - 2y ]2
= ( 2x )2 = 4x2
tính :
\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
2y-\(\frac{6xy+2y}{3x+2y}+\frac{2y-9x^2}{3x+2y}\)
M)(x^2-2xy+y^2)(x-y) N)-(x-y)(x^2+xy-1) Ờ)-(x^2-2y)(x+y^2-1) P)(1/2x-1)(2x-3) Q)(x-1/2y)(x-1/2y) R)(x^2-2x+3)(1/2x-5)
m: (x-y)(x^2-2xy+y^2)
=(x-y)*(x-y)^2
=(x-y)^3
=x^3-3x^2y+3xy^2-y^3
n: =-(x^3+x^2y-x-x^2y-xy^2+y)
=-x^3+x+xy^2-y
o: =-(x^3+x^2y^2-x^2-2xy-2y^3+2y)
=-x^3-x^2y^2+x^2+2xy+2y^3-2y
p: (1/2x-1)(2x-3)
=1/2x*2x-1/2x*3-2x+3
=x^2-3/2x-2x+3
=x^2-7/2x+3
q: (x-1/2y)(x-1/2y)
=(x-1/2y)^2
=x^2-xy+1/4y^2
r: (x^2-2x+3)(1/2x-5)
=1/2x^3-5x^2-x^2+10x+3/2x-15
=1/2x^3-6x^2+11,5x-15
1. Tính tổng: S = x+ 2y+3z, biết rằng:
\(\dfrac{1}{x+2y}+\dfrac{1}{2y+3z}+\dfrac{1}{3z+x}=\dfrac{12x}{2y+3z}+\dfrac{24y}{3z+x}+\dfrac{36z}{x+2y}=2016\)
bạn chịu khó suy nghĩ chút sẽ ra bài này dễ mà
Cho ba số thực x,y,z thoả mãn : x+2y+3z=18
Cmr : \(\dfrac{2y+3z+5}{1+x}+\dfrac{3z+x+5}{1+2y}+\dfrac{x+2y+5}{1+3z}\ge\dfrac{51}{7}\)
\(VT=\dfrac{2y+3z+5}{1+x}+1+\dfrac{3z+x+5}{2y+1}+1+\dfrac{x+2y+5}{1+3z}+1-3\)
\(VT=\dfrac{x+2y+3z+6}{1+x}+\dfrac{x+2y+3z+6}{1+2y}+\dfrac{x+2y+3z+6}{1+3z}-3\)
\(VT=24\left(\dfrac{1}{1+x}+\dfrac{1}{1+2y}+\dfrac{1}{1+3z}\right)-3\ge\dfrac{24.9}{1+x+1+2y+1+3z}-3=\dfrac{216}{21}-3=\dfrac{51}{7}\)