\(VT=\dfrac{2y+3z+5}{1+x}+1+\dfrac{3z+x+5}{2y+1}+1+\dfrac{x+2y+5}{1+3z}+1-3\)
\(VT=\dfrac{x+2y+3z+6}{1+x}+\dfrac{x+2y+3z+6}{1+2y}+\dfrac{x+2y+3z+6}{1+3z}-3\)
\(VT=24\left(\dfrac{1}{1+x}+\dfrac{1}{1+2y}+\dfrac{1}{1+3z}\right)-3\ge\dfrac{24.9}{1+x+1+2y+1+3z}-3=\dfrac{216}{21}-3=\dfrac{51}{7}\)