Ta có: (1/4)*(2/6)*(3/8)*(4/10)*(5/12)*...*(30/62)*(31/64)=2^x. Tìm x
tìm x biết :
(1/4).(2/6).(3/8).(4/10).(5/12)....(30/62).(31/64) = 2^x
Có: \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}...\frac{30}{62}.\frac{31}{64}=\frac{1}{2.2}.\frac{2}{2.3}.\frac{3}{2.4}...\frac{30}{2.31}.\frac{31}{2.32}=\frac{1}{2}.\frac{1}{2}.\frac{1}{2}...\frac{1}{2}.\frac{1}{2}.\frac{1}{32}\)
\(=\frac{1}{2^{31}.2^5}=\frac{1}{2^{36}}=2^x\)\(\Rightarrow1=2^x.2^{36}=2^{36+x}\)\(\Rightarrow2^{36+x}=2^0\Rightarrow36+x=0\Rightarrow x=-36\)
Tìm x, biết \(\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}...\dfrac{30}{62}.\dfrac{31}{64}=2^x\)
=>\(1\cdot\dfrac{2}{4}\cdot\dfrac{3}{6}\cdot...\cdot\dfrac{31}{62}\cdot\dfrac{1}{64}=2^x\)
=>\(2^x=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot...\cdot\dfrac{1}{2}\cdot\dfrac{1}{64}=\left(\dfrac{1}{2}\right)^{30}\cdot\left(\dfrac{1}{2}\right)^6=\dfrac{1}{2^{36}}\)
=>x=-36
1/4 x 2/6 x3/8 x 4/10 x 5/12 x....x 30/62 x 31/64=2n. Tìm n
<=> \(\frac{1.2.3....31}{4.6.8....64}=2^n\Rightarrow\frac{1.2.3....30.31}{2\left(2.3.4.5...31\right).32}=2^n\Leftrightarrow\frac{1}{2.32}=2^n\Leftrightarrow\frac{1}{2^6}=2^n\)
=> 2^6.2^n = 1
=> 2^ (n + 6 ) = 2^0
=> n+ 6 = 0
=> n = - 6
\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}....\frac{31}{64}=\frac{1.2.3....31}{4.6.8....64}=\frac{1.2.3....31}{2.3.2.4....2.32}=\frac{1.2.3....31}{2^{30}.\left(3.4....32\right)}=\frac{2}{2^{30}.32}=\frac{1}{2^{34}}=2^{-34}=2^n=>n=-34\)
2^n × 2³¹ = \(\dfrac{ }{ }\)2/4×4/6×6/8×...×62/64
2^n×2³¹=1/32=2^-5
2^n=2^-5 ÷ 2³¹=2^-36
=>n=-36
(x-1)x+2=(x-1)x+4
1/ 4 . 2/6 . 3/8 . 4/10 . 5/15 .... 30/62 . 31/64= 2x
a) Ta có: \(\left(x-1\right)^{x+2}-\left(x-1\right)^{x+4}=0\)
\(\Leftrightarrow\left(x-1\right)^x\cdot\left(x-1\right)^2-\left(x-1\right)^x\cdot\left(x-1\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\cdot\left[1-\left(x-1\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
b) Ta có: \(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot\dfrac{5}{15}\cdot...\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}=2x\)
\(\Leftrightarrow2x=\dfrac{1}{64}\)
hay \(x=\dfrac{1}{128}\)
Tìm x biết rằng: \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}.\frac{5}{12}...\frac{30}{62}.\frac{31}{64}=2^x\)
\(\frac{1.2.3.4....30.31}{2.2.2.3.2.3.....2.32}=\frac{2.3.4....30.31}{2^{31}\left(2.3...31\right).32}=\frac{1}{2^{31}.2^5}=\frac{1}{2^{36}}=2^{-36}\)
Vậy x=-36
ta có \(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}.....\frac{30}{62}\cdot\frac{31}{64}=2^x\)
=>\(\frac{1.2.3.4....31}{2\cdot2\cdot2\cdot3\cdot2\cdot3.....\cdot2\cdot3\cdot2}=\frac{2\cdot3\cdot4...30.31}{2^{31}\left(2\cdot3\cdot4...31\right)32}=\frac{1}{2^{31}\cdot2^5}=\frac{1}{2^{36}}=2^{-36}\)
\(=>x=-36\)
trong cái xã hội này có làm thì mới có ăn,ko lam mà ăn chỉ có ăn đầu b** ăn c**
Tìm x biết rằng :
\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}.\frac{5}{12}...\frac{30}{62}.\frac{31}{64}=2^x\)
Thanks for helping !
\(\Rightarrow\frac{1}{2.2}.\frac{2}{2.3}.\frac{3}{2.4}.\frac{4}{2.5}.\frac{5}{2.6}...\frac{30}{2.31}.\frac{31}{2.32}=2^x\)
\(\Rightarrow\frac{1}{2^{31}}.\frac{1.2.3.4....31}{2.3.4...32}=2^x\)
\(\Rightarrow\frac{1}{2^{31}}.\frac{1}{32}=2^x\)
\(\Rightarrow\frac{1}{2^{31}.2^5}=2^x\)
\(\Rightarrow\frac{1}{2^{36}}=2^x\Rightarrow x=-36\)
Tìm x
A, ( x - 1 )^x+2 = ( x - 1 )^x+4
B, 1/4 × 2/6 × 3/8 × 4/10 × 5/12 ×....× 30/62 × 31/64 = 2^x
\(A\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\\\Leftrightarrow \left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\\ \Leftrightarrow\left(x-1\right)^{x+2}\left(\left(x-1\right)^{x+2}+1\right)=0\\ \Leftrightarrow\left(x-1\right)^{x+2}=0hoac\left(x-1\right)^{x+2}+1=0\)
Giả tiếp đc x=1
Tìm x :
\(\dfrac{1}{4}\) . \(\dfrac{2}{6}\) . \(\dfrac{3}{8}\) . \(\dfrac{4}{10}\) . .... . \(\dfrac{30}{62}\) . \(\dfrac{31}{64}\)
`1/4. 2/6. 3/8. 4/10........ 30/62. 31/64=2^x`
`=>\underbrace{1/2. 1/2. 1/2. 1/2..............1/2}_{\text{30 số 2}}. 1/64=2^x`
`=>(1/2)^{30}.(1/2)^{6}=2^x`
`=>(1/2)^{36}=2^x`
`=>2^{-36}=2^x`
`=>x=-36`
Vậy `x=-36`
Tìm số nguyên n, biết rằng:
\(\dfrac{1}{4} . \dfrac{2}{6} . \dfrac{3}{8} .\dfrac{4}{10} . \dfrac{5}{12} .... \dfrac{30}{62} . \dfrac{31}{64} = 2^{n}\)\(\)
\(\dfrac{1}{2.2}.\dfrac{2}{2.3}.....\dfrac{31}{64}=2^x\\ =>\dfrac{1}{2.2.2.....2.64}=2^x\\ \dfrac{1}{2^{30}.26}=2^x\\ =>\dfrac{1}{2^{36}}=2^x\\ =>2^{-36}=2^x\\ =>x=-36\)
Ta có: \(2^n=\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}....\dfrac{30}{62}.\dfrac{31}{64}\)
⇔ \(2^n=\dfrac{1.2.3.4....31}{2.\left(2.3.4.....1\right).64}=\)
⇔ \(2^n=\dfrac{1}{2}.\dfrac{1}{64}=\dfrac{1}{128}\) \(\Leftrightarrow\) \(2^n=\dfrac{1}{2^6}\)
⇔ \(2^{x+6}=1\)
⇔ \(x+6=0\)
⇒ \(\left\{{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)