\(\dfrac{1}{2.2}.\dfrac{2}{2.3}.....\dfrac{31}{64}=2^x\\ =>\dfrac{1}{2.2.2.....2.64}=2^x\\ \dfrac{1}{2^{30}.26}=2^x\\ =>\dfrac{1}{2^{36}}=2^x\\ =>2^{-36}=2^x\\ =>x=-36\)
Ta có: \(2^n=\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}....\dfrac{30}{62}.\dfrac{31}{64}\)
⇔ \(2^n=\dfrac{1.2.3.4....31}{2.\left(2.3.4.....1\right).64}=\)
⇔ \(2^n=\dfrac{1}{2}.\dfrac{1}{64}=\dfrac{1}{128}\) \(\Leftrightarrow\) \(2^n=\dfrac{1}{2^6}\)
⇔ \(2^{x+6}=1\)
⇔ \(x+6=0\)
⇒ \(\left\{{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)