cho đường tròn (C) : x^2+y^2-2x=9 và điểm A( 0;1). tìm tọa độ 2 điểm B,C thuộc đường tròn sao cho tam giác ABC vuông cân tại A
Câu 26. Cho hai đường tròn (C):(x-2)^ 2 +(y-2)^ 2 =9;(C' ):x^ 2 +y^ 2 +4x-8y+11=0 ,biết (C) và (C') đối xứng nhau qua đường thẳng (a) .Phương trình của (a) là : A. 2x + 2y - 4 = 0 B.2x-y+3=0 . C. x + y - 4 = 0 . D. 2x + 2y = 0 .
cho đường tròn (C): x^2+y^2-2x+4y-4=0 và điểm A(1;5). Viết phương trình tiếp tuyến của đường tròn (C) tại điểm A
(C): x^2-2x+1+y^2+4y+4=9
=>(x-1)^2+(y+2)^2=9
=>I(1;-2); R=3
Khi x=1 và y=5 thì (1-1)^2+(5+2)^2=49<>9
=>A nằm ngoài (C)
Gọi (d): y=ax+b là phương trình tiếp tuyến tại A của (C)
Thay x=1 và y=5 vào (d), ta được:
a+b=5
=>b=5-a
=>y=ax+5-a
=>ax-y-a+5=0
Theo đề, ta có: d(I;(d))=3
=>\(\dfrac{\left|1\cdot a+\left(-2\right)\cdot\left(-1\right)-a+5\right|}{\sqrt{a^2+1}}=3\)
=>9a^2+9=(a+2-a+5)^2
=>9a^2+9=49
=>9a^2=40
=>a^2=40/9
=>\(a=\pm\dfrac{2\sqrt{10}}{3}\)
=>\(b=5\mp\dfrac{2\sqrt{10}}{3}\)
Cho đường tròn C x^2 + y² + 2x + 5y - 15 = 0 Viết phương trình đường thẳng vuông góc với đường thẳng delta: 4x + 3y - 2 = 0 cắt đường tròn C tại hai điểm a và b sao cho ab=6
Cho đường tròn ( C) : x^2 + y^2 - 2x + 4y - 4 = 0, có tâm I và đường thẳng d : √2x + my + 1 - √2 = 0
a) Tìm m để đường thẳng cắt đường tròn (C) tại hai điểm phân biệt A, B
b) Tìm m để diện tích tam giác IAB là lớn nhất
Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=3\)
a. Đường thẳng cắt đường tròn tại 2 điểm pb khi:
\(d\left(I;d\right)< R\Leftrightarrow\dfrac{\left|\sqrt{2}-2m+1-\sqrt{2}\right|}{\sqrt{2+m^2}}< 3\)
\(\Leftrightarrow\left(2m-1\right)^2< 9\left(m^2+2\right)\)
\(\Leftrightarrow8m^2+4m+17>0\) (luôn đúng)
Vậy đường thẳng luôn cắt đường tròn tại 2 điểm pb với mọi m
b. \(S_{IAB}=\dfrac{1}{2}IA.IB.sin\widehat{AIB}=\dfrac{1}{2}R^2.sin\widehat{AIB}\le\dfrac{1}{2}R^2\) do \(sin\widehat{AIB}\le1\)
Dấu "=" xảy ra khi \(sin\widehat{AIB}=1\Rightarrow\Delta IAB\) vuông cân tại I
\(\Rightarrow d\left(I;d\right)=\dfrac{R}{\sqrt{2}}\Leftrightarrow\dfrac{\left|2m-1\right|}{\sqrt{m^2+2}}=\dfrac{3}{\sqrt{2}}\)
\(\Leftrightarrow m^2+8m+16=0\Rightarrow m=-4\)
Trong mp Oxy cho điểm A (3;-1), đường thẳng d: x+y-1=0 và đường tròn ( C ) : x^2+y^2+2x-3y-1=0.tìm ảnh của A;d và (C) qua phép quay tâm O góc quay là -90°
Cho đường tròn C x^2 + y² + 2x + 5y - 15 = 0 Viết phương trình đường thẳng vuông góc với đường thẳng delta: 4x + 3y - 2 = 0 cắt đường tròn C tại hai điểm a và b sao cho ab=6 Giúp với mọi người ơiii SOS
Sửa đề: x^2+y^2+2x+6y-15=0
Δ vuông góc d nên Δ: 3x+4y+c=0
(C);x^2+y^2+2x+6y-15=0
=>x^2+2x+1+y^2+6y+9-25=0
=>(x+1)^2+(y+3)^2=25
=>R=5; I(-1;-3)
Kẻ IH vuông góc AB
=>H là trung điểm của AB
=>AH=6/2=3cm
=>IH=4cm
=>d(I;Δ)=IH=4
=>|c+3-12|/5=4
=>c=-11 hoặc c=29
=>3x+4y-11=0 hoặc 3x+4y+29=0
cho đường trong (c) x^2+y^2-2x+4/5=0 và đường tròn d: mx-y-2m+3=0. với những giá trị nào của của tham số m thì đường thẳng d và đường tròn không có điểm chung
- Xét đường tròn \(\left(C\right)\) có tâm \(I\left(1;0\right)\) và \(R=\dfrac{\sqrt{5}}{5}\)
- Để đường thẳng d và đường tròn không có điểm chung
\(\Leftrightarrow d_{\left(d/I\right)}=\dfrac{\left|m-2m+3\right|}{\sqrt{m^2+1}}>R=\dfrac{\sqrt{5}}{5}\)
\(\Leftrightarrow\dfrac{m^2-6m+9}{m^2+1}>\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{m^2-6m+9-0,2m^2-0,2}{m^2+1}>0\)
\(\Leftrightarrow0,8m^2-6m+8,8>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< \dfrac{11}{2}\end{matrix}\right.\)
Vậy ...
Trong mặt phẳng tọa độ Oxy cho điểm A(4; – 1), đường thẳng (d) : 3x – 2y + 1 = 0 và đường tròn (C) :
x^2 + y^2 - 2x + 4y -4 = 0
a. Tìm tọa độ A’ và phương trình (d’) lần lượt là ảnh của A và (d) qua phép tịnh tiến theo vectơ v = (– 2; 3)
b. Tìm phương trình đường tròn (C’) là ảnh của đường tròn (C) qua phép đối xứng trục là đường thẳng (D) : x – y = 0
trong số cá đường tròn sau, đường tròn nào tiếp xúc với trục Ox?
A. \(x^2+y^2-2x+10y=0\)
B. \(x^2+y^2-10y+1=0\)
C. \(x^2+y^2-5=0\)
D. \(x^2+y^2+6x+5y+9=0\)
C. \(x^2+y^2-5=0\)
Do đường tròn tiếp xúc với trục Ox nên R = d(I,Ox) = |yI|.
Phương trình trục Ox là y = 0
Đáp án D đúng vì: Tâm I(−3;\(\dfrac{-5}{2}\)) và bán kính R=\(\dfrac{5}{2}\). Ta có
d(I, Ox) = |yI| = R.