Đường tròn (C) tâm \(I\left(1;0\right)\) bán kính \(R=\sqrt{10}\)
Do tam giác ABC vuông cân tại A \(\Rightarrow AB=AC\)
Lại có \(IB=IC=R\)
\(\Rightarrow AI\) là trung trực BC \(\Rightarrow AI\) đồng thời là phân giác \(\widehat{BAC}\)
\(\Rightarrow\widehat{IAB}=45^0\)
\(\overrightarrow{AI}=\left(1;-1\right)\), do B thuộc đường tròn, gọi tọa độ B có dạng: \(B\left(x;y\right)\) với \(x^2+y^2-2x-9=0\)
\(\Rightarrow\overrightarrow{AB}=\left(x;y-1\right)\)
\(cos\widehat{IAB}=\dfrac{\sqrt{2}}{2}=\dfrac{\left|1.x-1\left(y-1\right)\right|}{\sqrt{2}.\sqrt{x^2+\left(y-1\right)^2}}\)
\(\Rightarrow\sqrt{x^2+y^2-2y+1}=\left|x-y+1\right|\)
\(\Rightarrow x^2+y^2-2y+1=x^2+y^2+1-2xy+2x-2y\)
\(\Rightarrow x-xy=0\Rightarrow x\left(1-y\right)=0\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y^2=9\Rightarrow y=\pm3\\y=1\Rightarrow x^2-2x-8=0\Rightarrow x=\left\{4;-2\right\}\end{matrix}\right.\)
Vậy tọa đô các điểm B;C tương ứng là: \(\left[{}\begin{matrix}\left(0;3\right);\left(-2;1\right)\\\left(0;-3\right);\left(4;1\right)\end{matrix}\right.\)