Tìm giá trị nhỏ nhất của biểu thức
\(A=x^2-8x+20\)
\(B=3x^2-2x+\frac{4}{3}\)
\(C=x^2-2x+y^2+4y+20\)
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)
Với x là số thực,tìm giá trị nhỏ nhất của các biểu thức sau:
1, A = 2x^2 - 8x + 1
2, B = x^2 + 3x + 2
3, C = 4x^2 - 8x
4, D = \(\dfrac{1}{5−x^2−2x}\)
\(A=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\ge-7\)
Dấu \("="\Leftrightarrow x=2\)
\(B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)
\(C=4\left(x^2-2x+1\right)-4=4\left(x-1\right)^2-4\ge-4\)
Dấu \("="\Leftrightarrow x=1\)
\(D=\dfrac{1}{-\left(x^2+2x+1\right)+6}=\dfrac{1}{-\left(x+1\right)^2+6}\ge\dfrac{1}{6}\)
Dấu \("="\Leftrightarrow x=-1\)
\(A=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\ge-7\)
\(A_{min}=-7\) khi \(x=2\)
\(B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
\(B_{min}=-\dfrac{1}{4}\) khi \(x=-\dfrac{3}{2}\)
\(C=4\left(x^2-2x+1\right)-4=4\left(x-1\right)^2-4\ge-4\)
\(C_{min}=-4\) khi \(x=1\)
Biểu thức D không tồn tại cả max lẫn min
1.
$A=2x^2-8x+1=2(x^2-4x+4)-7=2(x-2)^2-7$
Vì $(x-2)^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow A\geq 2.0-7=-7$
Vậy $A_{\min}=-7$ khi $x-2=0\Leftrightarrow x=2$
2.
$B=x^2+3x+2=(x^2+3x+1,5^2)-0,25=(x+1,5)^2-0,25\geq 0-0,25=-0,25$
Vậy $B_{\min}=-0,25$ khi $x=-1,5$
3.
$C=4x^2-8x=(4x^2-8x+4)-4=(2x-2)^2-4\geq 0-4=-4$
Vậy $C_{\min}=-4$ khi $2x-2=0\Leftrightarrow x=1$
4. Để $D_{\min}$ thì $5-x^2-2x$ là số thực âm lớn nhất
Mà không tồn tại số thực âm lớn nhất nên không tồn tại $x$ để $D_{\min}$
Với x là số thực,tìm giá trị nhỏ nhất của các biểu thức sau:
1, A = 2x^2 - 8x + 1
2, B = x^2 + 3x + 2
3, C = 4x^2 - 8x
4, D = \(\dfrac{1}{5-x^2-2x}\)
A\(=2x^2-8x+1\)
=2x(x-4)+1≥1
Min A=1 ⇔x=4
B=\(x^2+3x+2\)
\(=\left(x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}\right)-\dfrac{1}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\)≥\(-\dfrac{1}{4}\)
Min B=-1/4⇔x=-3/2
C=\(4x^2-8x\)
=\(\left(\left(2x\right)^2-2x.4+16\right)-16\)
=(2x-4)^2 -16≥-16
Min C=-16 ⇔x=2
D=\(\dfrac{1}{-\left(x^2-2x+1\right)+6}\)
=\(\dfrac{1}{-\left(x-1\right)^2+6}\)≥\(\dfrac{1}{6}\)
Min D=1/6 ⇔x=1
tìm giá trị nhỏ nhất của biểu thức: a) x2-2x+1
b) M= x2-3x+10
c) (x-3)(x+5)+4
d) x2-4x+y2-8y+6
e) 3x2+2x+1
f) 2x2+5y2+4xy+8x-4y-100
a) Đặt \(A=x^2-2x+1\)
Ta có: \(A=x^2-2x+1=\left(x-1\right)^2\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A_{min}=0\)
Dấu "=" xảy ra khi: \(x-1=0\)
\(\Leftrightarrow x=1\)
Vậy \(A_{min}=0\)\(\Leftrightarrow\)\(x=1\)
b) Ta có: \(M=x^2-3x+10\)
\(\Leftrightarrow M=\left(x^2-3x+\frac{9}{4}\right)+\frac{31}{4}\)
\(\Leftrightarrow M=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\forall x\)
\(\Rightarrow\)\(M_{min}=\frac{31}{4}\)
Dấu "=" xảy ra khi: \(x-\frac{3}{2}=0\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy \(M_{min}=\frac{31}{4}\)\(\Leftrightarrow\)\(x=\frac{3}{2}\)
Mình đặt A, B, C cho dễ nhìn nhé ;-;
a) A = x2 - 2x + 1 = ( x - 1 )2 ≥ 0 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinA = 0 <=> x = 1
b) B = x2 - 3x + 10 = ( x2 - 3x + 9/4 ) + 31/4 = ( x - 3/2 )2 + 31/4 ≥ 31/4 ∀ x
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MinB = 31/4 <=> x = 3/2
c) C = ( x - 3 )( x + 5 ) + 4
= x2 + 2x - 15 + 4
= ( x2 + 2x + 1 ) - 12
= ( x + 1 )2 - 12 ≥ -12 ∀ x
Đẳng thức xảy ra <=> x + 1 = 0 => x = -1
=> MinC = -12 <=> x = -1
d) D = x2 - 4x + y2 - 8y + 6
= ( x2 - 4x + 4 ) + ( y2 - 8y + 16 ) - 14
= ( x - 2 )2 + ( y - 4 )2 - 14 ≥ -14 ∀ x, y
Đẳng thức xảy ra <=> x = 2 ; y = 4
=> MinD = -14 <=> x = 2 ; y = 4
e) E = 3x2 + 2x + 1
= 3( x2 + 2/3x + 1/9 ) + 2/3
= 3( x + 1/3 )2 + 2/3 ≥ 2/3 ∀ x
Đẳng thức xảy ra <=> x + 1/3 = 0 => x = -1/3
=> MinE = 2/3 <=> x = -1/3
bài 1: giá trị lớn nhất của biểu thức A= -2x2+x-5
bài 2: giá trị của biểu thức 8x(2x-1)-(4x-1)2-13
bài 3: giá trị của biểu thức 90.10n-10n+2+10+1-20
bài 4: giá trị nhỏ nhất của 3x2+2x+28
B3:\(\Rightarrow90.10^n-10^n.10^2+10^n.10-20\Rightarrow10^n.\left(90-10^2\right)+10^n.10-20\)
\(\Rightarrow10^n.\left(90-100\right)+10^n.10-20\Rightarrow-10.10^n+10^n.10-20\Rightarrow-20\)
\(A=-\left(x^2-x+5\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{19}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\right]\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)
Vậy \(A_{min}=-\frac{19}{4}\Leftrightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
B2: \(\Rightarrow16x^2-8x-\left(16x^2-8x+1\right)-13\Rightarrow16x^2-8x-16x^2+8x-1-13\Rightarrow-14\)
Tim giá trị nhỏ nhất của các biểu thức sau
A=(2x-7)^4
B=(x+1)^10 +(y-2)^20 +7
C=(3x-4)^100 +(5y+1)^50 -20
D=(2x+3)^20 +(3y-4)^10 +100^0
E=(x-y)^50 +(y-2)^60 +3
Trả lời:
A = ( 2x - 7 )4
Ta có: \(\left(2x-7\right)^4\ge0\forall x\)
Dấu "=" xảy ra khi 2x - 7 = 0 <=> 2x = 7 <=> x = 7/2
Vậy GTNN của A = 0 khi x = 7/2
B = ( x + 1 )10 + ( y - 2 )20 + 7
Ta có: \(\left(x+1\right)^{10}\ge0\forall x;\left(y-2\right)^{20}\ge0\forall y\)
\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}\ge0\forall x;y\)
\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}+7\ge7\forall x;y\)
Dấu "=" xảy ra khi x + 1 = 0 <=> x = -1 và y - 2 = 0 <=> y = 2
Vậy GTNN của B = 7 khi x = -1 và y = 2
C = ( 3x - 4 )100 + ( 5y + 1 )50 - 20
Ta có: \(\left(3x-4\right)^{100}\ge0\forall x;\left(5y+1\right)^{50}\ge0\forall y\)
\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}\ge0\forall x;y\)
\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}-20\ge-20\forall x;y\)
Dấu "=" xảy ra khi 3x - 4 = 0 <=> x = 4/3 và 5y + 1 = 0 <=> y = -1/5
Vậy GTNN của C = -20 khi x = 4/3 và y = -1/5
D = ( 2x + 3 )20 + ( 3y - 4 )10 + 1000
Ta có: \(\left(2x+3\right)^{20}\ge0\forall x;\left(3y-4\right)^{10}\ge0\forall y\)
\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}\ge0\forall x;y\)
\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}+100^0\ge1\forall x;y\)
Dấu "=" xảy ra khi 2x + 3 = 0 <=> x = -3/2 và 3y - 4 = 0 <=> y = 4/3
Vậy GTNN của D = 1 khi x = -3/2 và y = 4/3
E = ( x - y )50 + ( y - 2 )60 + 3
Ta có: \(\left(x-y\right)^{50}\ge0\forall x;y\); \(\left(y-2\right)^{60}\ge0\forall y\)
\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}\ge0\forall x;y\)
\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}+3\ge3\forall x;y\)
Dấu "=" xảy ra khi x - y = 0 <=> x = y và y - 2 = 0 <=> y = 2
Vậy GTNN của E = 3 khi x = y = 2
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức sau:
a) S= \(\dfrac{3}{2x^2+2x+3}\)
b) T= \(\dfrac{5}{3x^2+4x+15}\)
c) V= \(\dfrac{1}{-x^2+2x-2}\)
d) X= \(\dfrac{2}{-4x^2+8x-5}\)
Tìm giá trị nhỏ nhất của các biểu thức sau:
a) x^2 - 6x - 17
b) x^2 - 10x
c) 3x^2 - 12x ₊ 5
d) 2x^2 - x - 1
e) x^2 ⁺ y^2 - 8x ⁺ 4y ⁺ 27
f) x.(x-6)
h) ( x - 2)×(x - 5).(x^2 - 7x - 10)
Cứuu tuiii. Cần gấp ạaaaa :<<
a,\(x^2-6x-17=x^2-2\cdot3x+9-26=\left(x-3\right)^2-26\ge-26\)
b, \(x^2-10x=x^2-2\cdot5x+25-25=\left(x-5\right)^2-25\ge-25\)
c,\(3x^2-12x+5=3x^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+12-7=\left(\sqrt{3}x-2\sqrt{3}\right)^2-7\ge-7\)
d,\(2x^2-x-1=2x^2-2\cdot\sqrt{2}x\cdot\dfrac{1}{2\sqrt{2}}+\dfrac{1}{8}-\dfrac{9}{8}=\left(\sqrt{2}x-\dfrac{1}{2\sqrt{2}}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)
e,\(x^2+y^2-8x+4y+27=x^2-2\cdot4x+16+y^2+2\cdot2y+4+7=\left(x-4\right)^2+\left(y+2\right)^2+7\ge7\)
f,\(x\left(x-6\right)=x^2-6x=x^2-2\cdot3x+9-9=\left(x-3\right)^2-9\ge-9\)
h,\(\left(x-2\right)\cdot\left(x-5\right)\cdot\left(x^2-7x-10\right)=\left(x^2-7x+10\right)\left(x^2-7x-10\right)=\left(x^2-7x\right)^2-100\ge-100\)
Mình giúp tính biểu thức thôi
còn lại bạn tự làm nhé
Bài 1 Tìm giá trị nhỏ nhất của mỗi biểu thức
a,A=(x + 10)2+(y-10)2+2010
b,B=(3x-y)2+/2x-1/ =7
Lưu ý:/2x-1/ là giá trị tuyệt đối
Bài 2 Tìm giá trị lớn nhất của mỗi biểu thức
a,C=-2(x+13)2+\(\sqrt{2}\)
b,D=\(\frac{4}{\left(x-3\right)^2+20}\)