\(3\sqrt{x}\times\sqrt{x}-2\)
giải phương trình
\(3\times\sqrt{2+x}-6\times\sqrt{2-x}+4\times\sqrt{4-x^2}=16-3\times x\)
\(\Leftrightarrow10-3x-4\sqrt{4-x^2}-3\left(\sqrt{2+x}-2\sqrt{2-x}\right)+6=0\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=a\Rightarrow a^2=10-3x-4\sqrt{4-x^2}\)
Phương trình trở thành:
\(a^2-3a+6=0\) (vô nghiệm)
Có lẽ bạn chép nhầm đề bài
cho p=
\(\left[\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\times\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]\div\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
a.rút gọn p
b.cho \(x\times y=16\), xác định để x, y có giá trị nhỏ nhất
lm nhanh giúp mk nhé
a) Ta có: \(P=\left[\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\cdot\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]:\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
\(=\left(\dfrac{2}{\sqrt{xy}}+\dfrac{1}{x}+\dfrac{1}{y}\right):\dfrac{x\sqrt{x}+y\sqrt{x}+x\sqrt{y}+y\sqrt{y}}{x\sqrt{xy}+y\sqrt{xy}}\)
\(=\left(\dfrac{x+2\sqrt{xy}+y}{xy}\right):\dfrac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}\left(x+y\right)}\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy}\cdot\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)
a) Đk:\(x>0;y>0\)
\(P=\left[\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}.\sqrt{y}}.\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]:\dfrac{x\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}+\sqrt{y}\right)}{x\sqrt{xy}+y\sqrt{xy}}\)
\(=\left[\dfrac{2}{\sqrt{xy}}+\dfrac{x+y}{xy}\right]:\dfrac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}\left(x+y\right)}\)
\(=\dfrac{2\sqrt{xy}+x+y}{xy}:\dfrac{\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy}.\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)
b) \(xy=16\Leftrightarrow x=\dfrac{16}{y}\)
\(P=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}=\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}=\dfrac{1}{\sqrt{\dfrac{16}{y}}}+\dfrac{1}{\sqrt{y}}=\dfrac{\sqrt{y}}{4}+\dfrac{1}{\sqrt{y}}\)
Áp dụng AM-GM có:
\(\dfrac{\sqrt{y}}{4}+\dfrac{1}{\sqrt{y}}\ge2\sqrt{\dfrac{\sqrt{y}}{4}.\dfrac{1}{\sqrt{y}}}=1\)
\(\Rightarrow P\ge1\)
Dấu "=" xảy ra khi \(y=4\Rightarrow x=4\)
Vậy x=y=4 thì P đạt GTNN là 1
P= \(\frac{15\times\sqrt{x}-11}{x+2\times\sqrt{x}-3}+\frac{3\times\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\times\sqrt{x}+3}{\sqrt{x}+3}\)
a) Rút gọn P (đừng làm tắt)
b)Tìm giá trị x sao cho P=\(\frac{1}{2}\)
*làm gấp giúp mìh nhé
BÀI 1 : THỰC HIỆN PHÉP TÍNH
a, \(\left(1+\sqrt{3}-\sqrt[2]{2}\right)\times\left(1+\sqrt{3}+\sqrt[2]{2}\right)\)
b, \(\left(\dfrac{3}{2}\times\sqrt{6}+2\times\sqrt{\dfrac{2}{3}}-4\times\sqrt{\dfrac{3}{2}}\right)\times\left(3\times\sqrt{\dfrac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)
BÀI 2 : rút gọn
B = \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-2}}\)
bài 1 : rút gọn các biểu thức sau .
a, \(\sqrt{4\left(a-3\right)^2}+2\sqrt{a^2+4a+4}\left(a< -2\right)\)
b, \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-2\right)^2}}+\dfrac{x^2-1}{x-3}\left(x< 3\right)\)
c, \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)
bài 2 thực hiện phép tính :\
a, \(\sqrt{8-\sqrt[2]{7}}\times\sqrt{8+\sqrt[2]{7}}\)
b, \(\sqrt{4+\sqrt{8}+}+\sqrt{2}+\sqrt{2+\sqrt{2}}\times\sqrt{2-\sqrt{2+2}}\)
c, \(\left(4+\sqrt{15}\right)\times\sqrt{10}-\sqrt{6}\times\sqrt{4-\sqrt{15}}\)
d, \(\left(2+\sqrt{3}\right)^2-\left(2-\sqrt{3}\right)\times\left(2+\sqrt{3}\right)\)
Bài 1 :
a) \(\sqrt{4\left(a-3\right)^2}+2\sqrt{\left(a^2+4a+4\right)}\)
= \(2\left|a-3\right|+2\left|a+2\right|\)
\(=2.\left(-a+3\right)+2\left(-a-2\right)\)
b) có sai đề ko ?
c) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}=4x-\sqrt{8}+\sqrt{\dfrac{x^2\left(x+2\right)}{x+2}}=4x-2\sqrt{4}+x=3x-2\sqrt{4}\)
\(\left(\frac{x-2}{\sqrt{x}\times\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\sqrt{x}\times\left(\sqrt{x}+2\right)}\right)\times\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
Lời giải:
Coi yêu cầu đề là rút gọn. Lần sau bạn chú ý viết đầy đủ đề.
ĐK: $x>0; x\neq 1$
Gọi biểu thức đã cho là $P$. Ta có:
\(P=\frac{x-2+\sqrt{x}}{\sqrt{x}(\sqrt{x}+2)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{(\sqrt{x}-1)(\sqrt{x}+2)}{\sqrt{x}(\sqrt{x}+2)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
Rút gọn biểu thức sau:
\(\sqrt{12+6\sqrt{3}}-\sqrt{3}\)
\(\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2\times\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)
Cho biểu thức P = \(\left(1+\frac{1}{\sqrt{x}-1}\right)\times\frac{1}{x-\sqrt{x}}\)
a) Rút gọn P b) Tìm x để \(P\times\sqrt{5+2\sqrt{6}}\times\left(\sqrt{x}-1\right)^2=x-2018+\sqrt{2}+\sqrt[]{3}\)
a) Tính giá trị của biểu thức: A=\(\dfrac{\sqrt{\dfrac{5}{2}-\sqrt{6}}+\sqrt{\dfrac{5}{2}+\sqrt{6}}}{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}\)
b) Cho biểu thức B=\(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\times\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{\sqrt{x}+x}{\sqrt{x}+1}\right)\)(với x≥0;x≠1)
Rút gọn B rồi tìm điều kiện của x để B<0
b: Ta có: \(B=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\cdot\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\left(x+\sqrt{x}+1+\sqrt{x}\right)\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\sqrt{x}-1}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)