Cho tam giác DEF cân tại D với đường trung tuyến DI.
a) Chứng minh: DEI =DFI.
b) Chứng minh DI < EF.
c) Kẻ đường trung tuyến EN. Chứng minh rằng: IN song song với ED.
Cho tam giác DEF cân tại D vơí đường trung tuyến DI.
a)Chứng minh :Tam giác DEI bằng tam giác DFI.
b) Chứng minh :Góc DIE là góc vuông.
c)Biết DI=12cm; IE =5cm .Tính DE.
a) Vì △DEF là tam giác cân nên DE = DF
Xét △DEI và△DFI có:
DE = DF
EI = IF
DI : cạnh chung
Suy ra △DEI = △DFI(c.c.c)
b) Vì △DEF là tam giác cân có đường trung tuyến DI
nên DI đồng thời là đường cao của △DEF
Suy ra \(\widehat{DIE}\) là góc vuông.
c) △DIE vuông tạ I có:
DE2 = DI2 + IE2 (định lí Pi-ta-go)
DE2 = 122 + 52
DE2 = 169
DE = \(\sqrt{169}\)= 13 (cm)
Bài 4: (3đ): Cho tam giác DEF cân tại D với đường trung tuyến DI.
a) Chứng minh:∆ DEI = ∆DFI.
b) Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.
c) Gọi G là trọng tâm tam giác DEF. Trên tia đối của tia DI lấy điểm M sao cho
𝐼𝑀=13𝐷𝐼. Chứng minh rằng: EM // FG.
a) Xét ΔDEI và ΔDFI có
DE=DF(ΔDEF cân tại D)
DI chung
EI=FI(I là trung điểm của EF)
Do đó: ΔDEI=ΔDFI(c-c-c)
b) Ta có: I là trung điểm của EF(gt)
nên \(IE=IF=\dfrac{EF}{2}=\dfrac{10}{2}=5\left(cm\right)\)
Ta có: ΔDEI=ΔDFI(cmt)
nên \(\widehat{DIE}=\widehat{DIF}\)(hai góc tương ứng)
mà \(\widehat{DIE}+\widehat{DIF}=180^0\)(hai góc kề bù)
nên \(\widehat{DIE}=\widehat{DIF}=\dfrac{180^0}{2}=90^0\)
Áp dụng định lí Pytago vào ΔDEI vuông tại I, ta được:
\(DE^2=DI^2+IE^2\)
\(\Leftrightarrow DE^2=5^2+12^2=169\)
hay DE=13(cm)
Cho tam giác DEF cân tại D với đường trung tuyến DI .
a) chứng minh : \(\Delta DEI\) = cân tại D với đường trung tuyến DI.
b) chứng minh DI \(\perp\) EF
c) Kẻ đường trung tuyến EN . chứng minh rằng : IN song song với ED .
bn tham khỏa đường link này nha /hoi-dap/detail/220486054053.html
Cho tam giác DEF cân tại D với đường trung tuyến DI.
a) Chứng minh: DEI =DFI.
b) Chứng minh DI ^ EF.
c) Kẻ đường trung tuyến EN. Chứng minh rằng: IN song song với ED.
a: Xét ΔDEI và ΔDFI có
DE=DF
EI=FI
DI chung
=>ΔDEI=ΔDFI
b: ΔDEF cân tại D
mà DI là trung tuyến
nên DI vuông góc EF
c: Xét ΔDFE có FI/FE=FN/FD
nên IN//ED
Cho tam giác DEF cân tại D với đường trung tuyến DI.
a) Chứng minh ΔDEI = ΔDFI.
b) Chứng minh DI là đường trung tuyến của DF
c) Cho DE=DF=13cm; FE = 10cm. Tính DI
Giải dùm tuii mọi người ơi. Cần gấp
a) Xét ΔDEI và ΔDFI c
DE = DF (ΔDEF cân)
DI là cạnh chung.
IE = IF (DI là trung tuyến)
➩ ΔDEI = ΔDFI (c.c.c)
b) Vì ∆DEI = ∆DFI => \(\widehat{DIE}\) \(= \widehat{DIF}\)
mà \(\widehat{DIE}\)+\(\widehat{DIF}\)=1800( kề bù)
nên \(\widehat{DIE}\)\(= \widehat{DIF}\)=900
c) I là trung điểm của EF nên IE = IF = 5cm.
ΔDIE vuông tại I
➩ DE2=DI2+EI2 (định lí Pitago)
➩ DI2=132–52=144
➩DI=12.
Cho tam giác DEF cân tại D có đường trung tuyến DI
a. Chứng minh: tam giác DEI = tam giác DFI
b. Chứng minh: DI vuông góc với EF
c. EN là đường trung tuyến. Chứng minh: IN // ED
a)tam giác dei=tg dfi (c.c.c)
b)nên góc dif bằng góc die bằng 90 độ nên di vuông góc với ef
c)EN là đường trung tuyến. nên nd=nf nên in là đường trung tuyến của tam giác vuông dif
trên tia đối tia ini vẽ điểm m sao cho nm=ni
chứng minh được tam giác dni=tam giác fnm (c.g.c)
nên di=ef (2ctu);và góc din bằng góc nmf(mà 2 góc này ở vị trí so le trong )nên di song song với mf nên goc dif bằng góc mfi bằng 90 độ
chứng minh đc tam giác dif =tam giác mfi (c.g.c) nên cạnh df =im nên in=1/2df nên in=nf nên tam giác inf cân tai n nên góc nif bằng nfi mà nfi = góc dei (tam giác def cân tại d) nên góc nif bằng góc dei
mà 2 góc này ở vị trí đồng vị nên in song song với de
bạn ơi ,bạn tự vẽ hình đi nha
Lương Ngọc Quỳnh Như làm sai câu c rồi
a. Xét tam giác DEI và tam giác DFI có:
DE=DF
góc DEI = góc DFI
EI=FI
Nên tam giác DEI=tam giác DFI
b. tam giác DEF cân tại D có DI là đường trung tuyến nên cũng là đường cao
suy ra DI vuông góc với EF
c. Bổ đề: Đoạn thẳng nối trung điểm hai cạnh của một tam giác thì song song với cạnh còn lại
Bổ đề có tên là đương ftrung bình của tam giác bạn tự chứng minh.
Cho tam giác DEF cân tại D với đường trung tuyến DI
a) chứng minh tam giác DEI=tam giác DFI
b)chứng minhDI vuông góc EF
a: Xét ΔDEI và ΔDFI có
DE=DF
EI=FI
DI chung
Do đó: ΔDEI=ΔDFI
b: Ta có: ΔDEF cân tại D
mà DI là đường trung tuyến
nên DI là đường cao
1/Cho tam giác DEF cân tại D với đường trung tuyến DI.
a) Chứng minh ΔDEI = ΔDFI.
b)Các góc DIE và góc DIF là những góc gì?
c.biết DI=12 cm, EF=10 cm. tính độ dài cạnh DE
giúp với
xét ΔDIE và ΔDIF có :
\(DB=DE\left(gt\right)\\ \widehat{DEI}=\widehat{DFI}\left(tgD\text{EF}c\text{â}nt\text{ại}D\right)\\ DI:chung\)
=> ΔDIE = ΔDIF (c.g.c )
=> góc DIE = góc DFI ( 2 góc t.ư)
có tg DEF cân tại D , đường trung tuyến DI
=> DI là đường trung trực
=> \(\widehat{DIE}=\widehat{D\text{IF}}=\dfrac{180^O}{2}=90^O\)
=> 2 GÓC là góc vuông
C) có tg DIE = tg DIF (cmt)
=> EI = FI ( 2 CẠNH t/ư)
=> EI = FI =1/2EF = 10:2 = 5 cm
có DEI là tg vuông tại I ( I là đường trung trực của tg DEF )
ADĐL P-T-G vào tg vuông DIE ta có
\(EI^2+ID^2=DE^2\\
\Leftrightarrow DE^2=12^2+5^2\\
\Leftrightarrow DE^2=169\\
\Leftrightarrow DE=13cm\)
cho tam giác ABC vuông ở A, có góc C=30 độ AH vuông góc với BC.( H thuộc BC) .Trên đoạn HC lấy điểm D sao cho HD=HB. từ C kẽ CE vuông với AD. chứng minh rằng:
A. tam giác ABD là tam giác đều
B. AH=CE
C. EH//AC
giúp mik với mik đg cần gấp
Cho tam giác DEF cân tại D với đường trung tuyến DI.
a) Chứng minh tam giac DEI va tam giac DFI b) Các góc DIE và DFIlà những góc gì?
c) Biết DE = DF = 13cm, EF = 10cm, hãy tính độ dài đường trung tuyến DI.
a) Xét ΔDEI và ΔDFI có
DE=DF(ΔDEF cân tại D)
DI chung
EI=FI(I là trung điểm của EF)
Do đó: ΔDEI=ΔDFI(c-c-c)
b) Ta có: ΔDEI=ΔDFI(cmt)
nên \(\widehat{DIE}=\widehat{DIF}\)(hai góc tương ứng)
mà \(\widehat{DIE}+\widehat{DIF}=180^0\)(hai góc kề bù)
nên \(\widehat{DIE}=\widehat{DIF}=\dfrac{180^0}{2}=90^0\)
Vậy: Các góc DIE và DIF là các góc vuông)
c) Ta có: I là trung điểm của EF(gt)
nên \(EI=\dfrac{EF}{2}=\dfrac{10}{2}=5\left(cm\right)\)
Áp dụng định lí Pytago vào ΔDEI vuông tại I, ta được:
\(DE^2=EI^2+DI^2\)
\(\Leftrightarrow DI^2=DE^2-EI^2=13^2-5^2=144\)
hay DI=12(cm)
Vậy: DI=12cm