Cho S = 1-3+32-33+...+398-399
Cmr S E B(-20)
Ai giải đúng và nhanh nhất sẽ được 3 tick
Cho S = 1-3 + 32-33 +....+398-399 . Chứng minh rằng S chia hết cho 20 , giúp mk nhanh nha
S = (1 - 3 + 32 - 33) + 34 . (1 - 3 + 32 - 33) + .... + 396 . (1 - 3 + 32 - 33)
S = (-20) + 34 . (-20) +.... + 396 . (-20)
S = (-20) . (1 + 34 +...+ 396)
\(\Rightarrow\)S \(⋮\) 20
(Ko bt có đúng ko)
*KO CHÉP MẠNG*
Tính S = 1-3+32-33+...+398-399
Ai giải đúng và nhanh nhất sẽ được 3 tick
S = 1-3+32-33+...+398-399
3S=3-32+33-34+...+399-3100
=>3S-S=2S=1-3100
\(S=\frac{1-3^{100}}{2}\)
S = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99
=> 3S = 3 - 3^2 + 3^3 - 3^4 + ... + 3^98 - 3^100
=> 3S + S = (3 - 3^2 + 3^3 - 3^4 + ... + 3^98 - 3^100) + (1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99)
=> 4S = 1 - 3^100
=> S = 1 - 3^100 / 4
S = 1 - 3 + 3 2 - 3 3 + ... + 398 - 399
3S = 3 - 32 + 33 - 34 +...+399 - 3100
Ta có :
3S + S =( 3 - 32 + 33 - 34 +...+399 - 3100 )
+ ( 1 - 3 + 3 2 - 3 3 + ... + 398 - 399 )
4S = 3100 + 1
S = \(\frac{3^{100}+1}{4}\)
Cho S = 1 – 3 + 32 – 33 + … + 398 – 399. Số dư của S khi chia cho 20 là bao nhiêu?
\(S=1-3+3^2-3^3+...+3^{98}-3^{99}=\left(1-3+3^2-3^3\right)+3^4\left(1-3+3^3-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)=\left(-20\right)+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)=\left(-20\right)\left(1+3^4+...+3^{96}\right)⋮20\)
Ta có: \(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)\)
\(=-20\cdot\left(1+...+3^{96}\right)⋮20\)
Cho S = 1-3+32-33+...+398 - 399.
a) Chứng minh rằng : S là bội của -20.
b) Tính S, từ đó suy ra 3100 chia cho 4 dư 1.
a,
S = 1 - 3 + 32 - 33+...+398 - 399
S = 30 - 31 + 32 - 33+...+ 398 - 399
xét dãy số: 0; 1; 2; 3;...;99
Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1
Dãy số trên có số số hạng là: (99 - 0): 1 + 1 = 100 (số)
100 : 4 = 25
Vậy ta nhóm 4 số hạng liên tiếp của tổng S thành 1 nhóm thì:
S = ( 1 - 3 + 32 - 33) +....+( 396 - 397 + 398 - 399)
S = - 20+...+ 396.(1 - 3 + 32 - 33)
S = - 20 +...+ 396.(-20)
S = -20.( 30 + ...+ 396) (đpcm)
b,
S = 1 - 3 + 32 - 33+...+ 398 - 399
3S = 3 - 32 + 33-...-398 + 399 - 3100
3S + S = - 3100 + 1
4S = - 3100 + 1
S = ( -3100 + 1): 4
S = - ( 3100 - 1) : 4
Vì S là số nguyên nên 3100 - 1 ⋮ 4 ⇒ 3100 : 4 dư 1 (đpcm)
Tính tổng S=1^2+2^2+3^2+.....+20^2-(1+2+3+....+20) ta thu được kết quả là S=?
Bạn nào trả lời và trình bày lời giải đúng nhất mình sẽ tick
a)Rút gọn phân số : \(\dfrac{25^{28}+25^{24}+25^{20}+.....+25^4+1}{25^{30}+25^{28}+....+25^2+1}\)
b) Cho S = 1-3 + 32-33+.....+398-399
a) Ta có: \(\dfrac{25^{28}+25^{24}+25^{20}+...+25^4+1}{25^{30}+25^{28}+...+25^2+1}\)
\(=\dfrac{25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+...+\left(25^4+1\right)}{25^{28}\left(25^2+1\right)+25^{24}\left(25^2+1\right)+...+\left(25^2+1\right)}\)
\(=\dfrac{\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}{\left(25^2+1\right)\left(25^{28}+25^{24}+...+1\right)}\)
\(=\dfrac{\left(25^4+1\right)\cdot\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}{\left(25^2+1\right)\left[25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+25^8\left(25^4+1\right)+\left(25^4+1\right)\right]}\)
\(=\dfrac{\left(25^4+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}\)
\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}\)
\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}\)
\(=\dfrac{1}{25^2+1}=\dfrac{1}{626}\)
Vẽ hình tam giác ABC đường cao AH. Trên đoạn AH lấy điểm D sao cho AD =2DH. Cho BH =4cm, CH =8 cm
So sánh S BHD và S BAH
Vẽ hình luôn nha
Ai giải đúng và nhanh nhất sẽ được 3 tick
Ta có: SBHD= 1/2. BH.DH (vì tam giác BHD vuông tại H)
Lại có: SABH=1/2.BH.AH (vì tam giác ABH vuông tại H)
Nhận thấy: DH= 1/3.AH (vì 2.DH=AD)
=> 1/2.BH.DH = 1/2.BH.1/3.AH
=> SBDH = 1/3.SABH
Chứng minh
B=(n+2).(3n+1) chia hết cho 2
Ai giải đúng và nhanh nhất sẽ được 3 tick
+ Nếu n lẻ thì 3n lẻ => 3n + 1 chẵn => 3n + 1 chia hết cho 2 => B = (n + 2).(3n + 1) chia hết cho 2
+ Nếu n chẵn thì n + 2 chẵn => n + 2 chia hết cho 2 => B = (n + 2).(3n + 1) chia hết cho 2
Vậy B = (n + 2).(3n + 1) luôn chia hết cho 2 (đpcm)
Ta xét từng trường hợp sau:
Nếu n là số lẽ thì n chia hết cho 2 => B chia hết cho 2
Nếu n chẵn thì n+2 chẵn => n+2 chia hết cho 2 => B chia hết cho 2
Vậy \(B=\frac{n+2}{3n+1}\)chia hết cho 2
tìm số tự nhiên x biết :
12x-33=32018:32017
bạn nào trả lời nhanh và đúng nhất sẽ được 2 tick
=> 12x-33 = 3
=> 12x = 3+33 = 36
=> x = 36 : 12 = 3
Vậy x=3
k mk nha
12x-33=32018:32017
12x-33=3
12x=3+33
12x=36
x=36:12
x=3
12x-33=32018:32017
12x-33=31
12x-33=3
12x=33+3
12x=36
x=36:12
x =3
Vậy x=3