Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Giang

Cho S = 1 – 3 + 32 – 33 + … + 398 – 399. Số dư của S khi chia cho 20 là bao nhiêu?

Lấp La Lấp Lánh
26 tháng 8 2021 lúc 22:21

\(S=1-3+3^2-3^3+...+3^{98}-3^{99}=\left(1-3+3^2-3^3\right)+3^4\left(1-3+3^3-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)=\left(-20\right)+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)=\left(-20\right)\left(1+3^4+...+3^{96}\right)⋮20\)

Nguyễn Lê Phước Thịnh
26 tháng 8 2021 lúc 22:23

Ta có: \(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)\)

\(=-20\cdot\left(1+...+3^{96}\right)⋮20\)


Các câu hỏi tương tự
Nguyễn Minh Dương
Xem chi tiết
Nguyễn Thị Vương Nga
Xem chi tiết
Nguyễn Thị Vương Nga
Xem chi tiết
Phan Lâm Thanh Trúc
Xem chi tiết
Đỗ Thái Phương My
Xem chi tiết
Lê Tấn Phát
Xem chi tiết
Bùi Khánh Hòa
Xem chi tiết
Hong Vy Nguyen
Xem chi tiết
Nguyễn Phương Chi
Xem chi tiết