1)\(x^4+x^2+1=35\)
2)\(\frac{3x}{x^2+5x-5}+\frac{x^2+5x-5}{x}+4=0\)
Bài 4 Giải các bất phương trình sau :
31 , \(\frac{-3x^2-x+4}{x^2+3x+5}>0\)
32 , \(\frac{4x^2+3x-1}{x^2+5x+7}>0\)
33 , \(\frac{5x^2+3x-8}{x^2-7x+6}< 0\)
34 , \(\frac{2x-5}{x^2-6x-7}< \frac{1}{x-3}\)
35 , \(\frac{x^2-5x+6}{x^2+5x+6}\ge\frac{x+1}{x}\)
Giải phương trình :
\(\frac{1}{5x^2-x+3}+\frac{1}{5x^2+x+7}+\frac{1}{5x^2+3x+13}+\frac{1}{5x^2+5x+21}=\frac{4}{x^2+6x+5}\) với x > 0
Ai giúp vs !!!
\(a.\frac{3x-7}{5}=\frac{2x-1}{3}\\ b.\frac{4x-7}{12}-x=\frac{3x}{8}\\ c.\frac{x-2009}{1234}+\frac{x-2009}{5678}-\frac{x-2009}{197}=0\\ d.\frac{5x-8}{3}=\frac{1-3x}{2}\\ e.\frac{x-5}{6}-\frac{x-9}{4}=\frac{5x-3}{8}+2\\ f.\frac{x-1}{\frac{2}{5}}-3-\frac{3x-2}{\frac{5}{4}}-2=1\)
\(\frac{3x-7}{5}=\frac{2x-1}{3}\)
\(\Leftrightarrow9x-21=10x-5\)
\(\Leftrightarrow-x=16\Leftrightarrow x=-16\)
\(\frac{4x-7}{12}-x=\frac{3x}{8}\)
\(\Leftrightarrow\frac{4x-7-12x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow\frac{-7-8x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow-56-64x=36x\)
\(\Leftrightarrow-56=100x\Leftrightarrow x=\frac{-14}{25}\)
\(\frac{x-2009}{1234}+\frac{x-2009}{5678}-\frac{x-2009}{197}=0\)
\(\Leftrightarrow\left(x-2019\right)\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)=0\)
Vì \(\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)\ne0\)nên x - 2019 = 0
Vậy x = 2019
\(\frac{5x-8}{3}=\frac{1-3x}{2}\)
\(\Leftrightarrow10x-16=3-9x\)
\(\Leftrightarrow19x=19\Leftrightarrow x=1\)
\(\frac{x-5}{6}-\frac{x-9}{4}=\frac{5x-3}{8}+2\)
\(\Rightarrow\frac{4x-20-6x+54}{24}=\frac{5x-3+16}{8}\)
\(\Rightarrow\frac{-2x+34}{24}=\frac{5x+13}{8}\)
\(\Rightarrow-16x-272=120x+312\)
\(\Leftrightarrow-136x=584\Leftrightarrow x=\frac{-73}{17}\)
giải hệ phương trình và phương trình sau
1 , x4 - \(\frac{1}{2}\)x3 - x2 - \(\frac{1}{2}\)x + 1 = 0
2, x4 + 3x2 -\(\frac{35}{4}\)x2 -3x + 1 = 0
3, 2x4 + 5x3 + x2 + 5x + 2 = 0
4 , x4 + 5x3 + 12x + 20 + 16 = 0
5, 16x4 - 24x3 + 16x2 - 6x +1 = 0
6, 27x4 - 6x3 - 37x2 + 4x + 12 = 0
7, x4 + ( x - 1 ) ( x2 + 2x + 2 ) = 0
8, ( x- 4 )2 + ( x - 2 ) ( 5x2 - 14x + 13 ) +1 = 0
9 , ( x2 - x ) 2 - 2x ( 3x - 5 ) - 3 = 0
Mình giải mẫu pt đầu thôi nhé, những pt sau ttự.
1,\(x^4-\frac{1}{2}x^3-x^2-\frac{1}{2}x+1=0\)
Ta thấy x=0 ko là nghiệm.
Chia cả 2 vế cho x2 >0:
pt\(\Leftrightarrow x^2-\frac{1}{2}x-1-\frac{1}{2x}+\frac{1}{x^2}=0\)
Đặt \(t=x-\frac{1}{x}\left(t\in R\right)\)
\(\Rightarrow x^2+\frac{1}{x^2}=t^2+2\)
pt\(\Leftrightarrow t^2-\frac{1}{2}t+1=0\)(vô n0)
Vậy pt vô n0.
#Walker
Bài 1. Giải các phương trình sau :
a) 7x - 35 = 0 b) 4x - x - 18 = 0
c) x - 6 = 8 - x d) 48 - 5x = 39 - 2x
Bài 2. Giải các phương trình sau :
a) 5x - 8 = 4x - 5 b) 4 - (x - 5) = 5(x - 3x)
c) 32 - 4(0,5y - 5) = 3y + 2 d) 2,5(y - 1) = 2,5y
Bài 3. Giải các phương trình sau :
a) \(\frac{3x-7}{5}=\frac{2x-1}{3}\)
b) \(\frac{4x-7}{12}- x=\frac{3x}{8}\)
Bài 4. Giải các phương trình sau :
a) \(\frac{5x-8}{3}=\frac{1-3x}{2}\)
b) \(\frac{x-5}{6}-\frac{x-9}{4}=\frac{5x-3}{8}+2\)
Bài 5. Giải các phương trình sau :
a) 6(x - 7) = 5(x + 2) + x b) 5x - 8 = 2(x - 4) + 3
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
có bị viết nhầm thì thông cảm nha!
la`thu'hai nga`y 19 nhe
Bài 1. Giải các phương trình sau :
a) 7x - 35 = 0 b) 4x - x - 18 = 0
c) x - 6 = 8 - x d) 48 - 5x = 39 - 2x
Bài 2. Giải các phương trình sau :
a) 5x - 8 = 4x - 5 b) 4 - (x - 5) = 5(x - 3x)
c) 32 - 4(0,5y - 5) = 3y + 2 d) 2,5(y - 1) = 2,5y
Bài 3. Giải các phương trình sau :
a) \(\frac{3x-7}{5}=\frac{2x-1}{3}\)
b) \(\frac{4x-7}{12}- x=\frac{3x}{8}\)
Bài 4. Giải các phương trình sau :
a) \(\frac{5x-8}{3}=\frac{1-3x}{2}\)
b) \(\frac{x-5}{6}-\frac{x-9}{4}=\frac{5x-3}{8}+2\)
Bài 5. Giải các phương trình sau :
a) 6(x - 7) = 5(x + 2) + x b) 5x - 8 = 2(x - 4) + 3
\(1.\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}
\)
2.\(\frac{2x^4}{\left(x+1\right)^2}-\frac{5x^2}{x+1}+2=0\)
3.\(\left(x+\frac{1}{x}\right)^2-6\left(x+\frac{1}{x}\right)+8=0\)
4.\(\left(x^2+\frac{1}{x^2}\right)-4\left(x+\frac{1}{x}\right)+6=0\)
5.\(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x+2}=1\)
Giải phương trình
\(\frac{1}{5x^2-x+3}+\frac{1}{5x^2+x+7}+\frac{1}{5x^2+3x+13}+\frac{1}{5x^2+5x+21}=\frac{4}{x^2+6x+5}\) với x>0
@@@ Giúp em với @@@
--- Em đag cần ạ ---
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(4x^2+1\geq 4x\)
\(\Rightarrow \left\{\begin{matrix} 5x^2-x+3\geq x^2+3x+2\\ 5x^2+x+\geq x^2+5x+6\\ 5x^2+3x+13\geq x^2+7x+12\\ 5x^2+5x+21\geq x^2+9x+20\end{matrix}\right.\)
\(\text{VT}\leq \frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\)
\(\Leftrightarrow \text{VT}\leq \frac{1}{(x+1)(x+2)}+\frac{1}{(x+2)(x+3)}+\frac{1}{(x+3)(x+4)}+\frac{1}{(x+4)(x+5)}\)
\(\Leftrightarrow \text{VT}\leq \frac{(x+2)-(x+1)}{(x+1)(x+2)}+\frac{(x+3)-(x+2)}{(x+2)(x+3)}+\frac{(x+4)-(x+3)}{(x+3)(x+4)}+\frac{(x+5)-(x+4)}{(x+4)(x+5)}\)
\(\Leftrightarrow \text{VT}\leq \frac{1}{x+1}-\frac{1}{x+5}\)
\(\Leftrightarrow \text{VT}\leq \frac{4}{x^2+6x+5}\)
Dấu "=" xảy ra khi $4x^2=1, x>0$ hay $x=\frac{1}{2}$
Vậy $x=\frac{1}{2}$ là nghiệm của PT.
1)\(-x^2+4x-6+\frac{21}{x^2-4x+10}=0\)
2 ) \(\frac{3x}{x^2+5x-5}+\frac{x^2+5x-5}{x}+4=0\)
Chi tiết giùm mình nhá
1) -x2+4x-6+ \(\frac{21}{x^2-4x+10}\)= 0
Đặt -x2+4x+10 là a, ta có:
-a +4+\(\frac{21}{a}\)=0
=> \(\frac{21+4a-a^2}{a}\)=0
=> 21+4a-a2=0
=>-(a-2)2=-25
=> (a-2)2=25 => \(\orbr{\begin{cases}a=7\\a=-3\end{cases}}\)
Bạn thay a vào rồi tính tiếp nha