c) -3/16; -21 phần 56 quy đồng ạ
cho a,b,c dương thỏa a+b+c=3 chứng minh rằng
\(\dfrac{a}{b^3+16}+\dfrac{b}{c^3+16}+\dfrac{c}{a^3+16}\ge\dfrac{1}{6}\)
Giá trị biểu thức 9/16-3/16:3/8 là :
A15/16 B1 c 5/16 D.1/16
cho a,b,c không âm a+b+c=3 CMR
\(\frac{a}{b^3+16}+\frac{b}{c^3+16}+\frac{c}{a^3+16}\ge\frac{1}{6}.\)
Ta có :
\(\frac{a}{b^3+16}=\frac{a}{16}-\frac{ab^3}{16\left(b^3+16\right)}\ge\frac{a+b+c}{16}-\frac{ab^2+bc^2+ca^2}{192}.\)(1)
Không mất tính tổng quát, giả sử \(a\ge b\ge c\)ta có:
\(\text{a(a−b)(b−c)≥0 ⇔abc+a^2b≥ab^2+ca^2}\)
Ta có: \(ab^2+bc^2+ca^2+abc\le bc^2+2abc+a^2b=b(a+c)^2\le\frac{4\left(a+b+c\right)^3}{27}=4\)(2)
Từ (1) và (2) suy ra dpcm
Dấu ''='' xảy ra khi (a,b,c)=(0,1,2)(a,b,c)=(0,1,2) cùng các hoán vị.
Gỉa sử \(a\ge b\ge c\)
Ta có:
\(b\le\frac{a+b+c}{3}\)(1)
\(\left(a+c\right)^2\le\left(\frac{2\left(a+b+c\right)}{3}\right)^2=\frac{4\left(a+b+c\right)^2}{9}\)(2)
nhân theo vế (1)(2) suy ra dpcm
cho a,b,c là các số thực không âm ,a+b+c=3. tìm giá trị nhỏ nhất của biểu thức P=a/(a^3+16)+b/(b^3 +16)+c/(c^3+16)
Ta co:
\(0\le a,b,c\le3\Rightarrow\hept{\begin{cases}a^2\le3a\\b^2\le3b\\c^2\le3c\end{cases}}\Rightarrow\hept{\begin{cases}a^3\le9a\\b^3\le9b\\c^3\le9c\end{cases}}\)
\(\Rightarrow M=\Sigma_{cyc}\frac{a}{a^3+16}\ge\Sigma_{cyc}\frac{a}{9a+16}=\Sigma_{cyc}\frac{a^2}{9a^2+16a}\ge\frac{\left(a+b+c\right)^2}{9\left(a^2+b^2+c^2\right)+16\left(a+b+c\right)}\)
\(\Rightarrow M\ge\frac{\left(a+b+c\right)^2}{27\left(a+b+c\right)+16\left(a+b+c\right)}=\frac{3}{43}\)
Dau '=' xay ra khi \(\left(a;b;c\right)=\left(0;0;3\right)=\left(3;0;0\right)=\left(0;3;0\right)\)
cách làm này vẫn có 1 số chỗ không rõ
Cho a;b;c không âm thỏa a+b+c=3. Chứng minh:
\(\dfrac{a}{b^3+16}+\dfrac{b}{c^3+16}+\dfrac{c}{a^3+16}\ge\dfrac{1}{6}\)
Ta có:
\(\sum\dfrac{a}{b^3+16}=\sum\left(\dfrac{a}{16}-\dfrac{ab^3}{16\left(b^3+16\right)}\right)\ge\dfrac{a+b+c}{16}-\dfrac{ab^2+bc^2+ca^2}{192}\)
\(=\dfrac{3}{16}-\dfrac{ab^2+bc^2+ca^2}{192}\)
Giờ ta cần chứng minh
\(ab^2+bc^2+ca^2\le4\)
Ta có bổ đề:
\(ab^2+bc^2+ca^2+abc\le\dfrac{4\left(a+b+c\right)^3}{27}\)(cái này tự chứng minh nha)
\(\Rightarrow ab^2+bc^2+ca^2\le4-abc\le4\)
Sao chỗ đó e lại nghĩ là a dùng cosi mẫu thế e.
Hãy cho biết kết quả xuất ra màn hình sau khi thực hiện câu lệnh Writeln(16*2-3);
A. 16*2-3= B. 16*2-3=29 C. 29 D. 16*2-3
Cho các số thực không âm a, b, c thỏa mãn a + b + c = 3. Tìm giá trị nhỏ nhất của biểu thức S = \(\frac{a}{b^3+16}+\frac{b}{c^3+16}+\frac{c}{a^3+16}\)
Do a + b + c = 3 nên ta có thể đặt \(\left(a;b;c\right)=\left(\frac{3x}{x+y+z};\frac{3y}{x+y+z};\frac{3z}{x+y+z}\right);\left(x,y,z\ge0\right)\)
Thế vào nó ra bất đẳng thức đồng bậc nên em nghĩ có thể dùng SOS để chứng minh: \(S\ge\frac{3}{17}\)
\(16S=\sum\frac{16a}{b^3+16}=\sum a-\sum\frac{ab^3}{b^3+16}\ge3-\sum\frac{ab^2}{12}=3-\frac{ab^2+bc^2+ca^2}{12}\)
Giả sử b là số ở giữa . \(\Rightarrow\left(b-a\right)\left(b-c\right)\le0\)
\(\Leftrightarrow b^2+ac\le bc+ab\)
\(\Leftrightarrow ab^2+bc^2+ca^2\le b\left(a+c\right)^2=\frac{2b\left(a+c\right)\left(a+c\right)}{2}\le\frac{\left[2\left(a+b+c\right)\right]^3}{54}=4\)
\(\Leftrightarrow16S\ge3-\frac{4}{12}=\frac{8}{3}\Leftrightarrow S\ge\frac{1}{6}\)
Vậy GTNN của \(S=\frac{1}{6}\) . Dấu \("="\) xảy ra khi \(a=0;b=1;c=2\) và hoán vị
Gọi (H) là hình phẳng giới hạn bởi parabol (P): y = 8 x - x 2 và trục hoành. Các đường thẳng y=a,y=b,y=c với 0<a<b<c<16 chia (H) thành bốn phần có diện tích bằng nhau. Giá trị của biểu thức ( 16 - a ) 3 + ( 16 - b ) 3 + ( 16 - c ) 3 bằng
A. 2048.
B. 3584.
C. 2816.
D. 3480.
a, -15/16 + 9/16 + 11/16
b, 2/3 . (1,4) + 1,6 . 2/3 - 1,2 . 2/3
c, 3 và 2/15. 3/5+ 3 và 2/15. 2/5- 31/15
a) \(\dfrac{-15+9+11}{16}=\dfrac{5}{16}\)
b) \(\dfrac{2}{3}\left(1,4+1,6-1,2\right)=\dfrac{2}{3}\times\dfrac{9}{5}=\dfrac{6}{5}\)
c) \(3\dfrac{2}{15}\left(\dfrac{3}{5}+\dfrac{2}{5}\right)-\dfrac{31}{15}=\dfrac{47}{15}-\dfrac{31}{15}=\dfrac{16}{15}\)
C = (2^16 - 2^8).(2^16 - 3^8).(2^16 - 4^8)
C = (2^16 - 2^8).(2^16 - 3^8).(2^16 - 4^8)
C=(216-28).(216-38).[(22)8-48]
C=(216-28).(216-38).(48-48)
C=(216-28).(216-38).0
C=0