Do a + b + c = 3 nên ta có thể đặt \(\left(a;b;c\right)=\left(\frac{3x}{x+y+z};\frac{3y}{x+y+z};\frac{3z}{x+y+z}\right);\left(x,y,z\ge0\right)\)
Thế vào nó ra bất đẳng thức đồng bậc nên em nghĩ có thể dùng SOS để chứng minh: \(S\ge\frac{3}{17}\)
\(16S=\sum\frac{16a}{b^3+16}=\sum a-\sum\frac{ab^3}{b^3+16}\ge3-\sum\frac{ab^2}{12}=3-\frac{ab^2+bc^2+ca^2}{12}\)
Giả sử b là số ở giữa . \(\Rightarrow\left(b-a\right)\left(b-c\right)\le0\)
\(\Leftrightarrow b^2+ac\le bc+ab\)
\(\Leftrightarrow ab^2+bc^2+ca^2\le b\left(a+c\right)^2=\frac{2b\left(a+c\right)\left(a+c\right)}{2}\le\frac{\left[2\left(a+b+c\right)\right]^3}{54}=4\)
\(\Leftrightarrow16S\ge3-\frac{4}{12}=\frac{8}{3}\Leftrightarrow S\ge\frac{1}{6}\)
Vậy GTNN của \(S=\frac{1}{6}\) . Dấu \("="\) xảy ra khi \(a=0;b=1;c=2\) và hoán vị