Học đạo hàm để tìm cực tiểu chưa bro? Như thế mới đơn giản bài toán.
Còn chưa thì t chịu -.-
Học đạo hàm để tìm cực tiểu chưa bro? Như thế mới đơn giản bài toán.
Còn chưa thì t chịu -.-
cho ba số thực dương a,b,c thỏa mãn a+b+c=5.Giá trị nhỏ nhất của biểu thức P=4a+4b+\(\dfrac{c^3}{ab+b}\)là
Cho các số thực dương a,b,c thỏa mãn a + b + c = 1. Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{1}{a}+\frac{4}{b}+\frac{9}{c}\)
Cho a,b,c là các số thực dương thay đổi thỏa mãn: \(a^2+b^2+c^2=3\)
Tìm giá trị nhỏ nhất của biểu thức: P = \(\frac{a^2}{b^2+c^2+bc}+\frac{b^2}{a^2+c^2+ac}+\frac{c^2}{a^2+b^2+ab}\)
Câu 1: Cho a,b là các số dương thỏa mãn a+b=2016. Tìm giá trị lớn nhất của biểu thức P=ab
a.10082 b,2016 c.20162 d.4.20162
Câu 2: Cho a,b là các số dương thỏa mãn ab=16 và đặt P=\(\dfrac{a+b}{2}\). Khẳng định nào sau đây là đúng
a.P≥4 b.P≥8 c.\(\dfrac{17}{2}\) d.5
Câu 3: Cho a, b là các số dương. Tìm giá trị nhỏ nhất của biểu thức P=\(\dfrac{a}{b}+\dfrac{b}{a}\)
a.2 b.0 c.1 d.-2
Câu 4: Tìm mệnh đề đúng
a. a2-a+1>0,∀a b. a2+2a+1>0,∀a c.a2-a≥0, ∀a d.a2-2a-1≥0,∀a
giúp em với ạ
Cho ba số thực a,b,c thỏa mãn điều kiện \(a^3+b^3+c^3-3abc=1\)
Tính giá trị nhỏ nhất của biểu thức \(P=a^2+b^2+c^2\)
Giúp e mấy bài này với ạ.
1) Cho a, b, c là các số thực không âm thỏa mãn ab + bc + ca = 1.
Chứng minh rằng: \(\frac{3ab+1}{a+b}+\frac{3bc+1}{b+c}+\frac{3ac+1}{c+a}\ge4.\)
2) Cho các số thực dương a, b, c sao cho \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\le1\)
Chứng minh rằng: \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\ge125.\)
3) Cho ba số thực dương a, b, c thỏa mãn a + b + c = 3. Tìm giá trị nhỏ nhất của biểu thức
P = \(\frac{a^2+b^2}{9-ab}+\frac{b^2+c^2}{9-bc}+\frac{c^2+a^2}{9-ca}.\)
4) Cho a, b, c là các số thực dương. Chứng minh rằng: \(\sqrt{\frac{bc}{a\left(3b+a\right)}}+\sqrt{\frac{ac}{b\left(3c+b\right)}}+\sqrt{\frac{ab}{c\left(3a+c\right)}}\ge\frac{3}{2}\)
Cho ba số thực dương a, b, c thỏa mãn \(a+b+c=1\) và a + b > 2c. Tìm GTNN của biểu thức \(P=\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\frac{6\sqrt{5}}{25\left(a+b\right)}\)
Cho các số thực không âm a, b, c thỏa mãn a + b + c = 3. Tìm giá trị nhỏ nhất của biểu thức S = \(\frac{a}{b^3+16}+\frac{b}{c^3+16}+\frac{c}{a^3+16}\)