\(\dfrac{20}{6}-\dfrac{7}{4}\)
Thực hiện phép tính: a) \(11\dfrac{3}{4}-\left(6\dfrac{5}{6}-4\dfrac{1}{2}\right)+1\dfrac{2}{3}\)
b) \(2\dfrac{17}{20}-1\dfrac{11}{15}+6\dfrac{9}{20}:3\) c) \(4\dfrac{3}{7}:\left(\dfrac{7}{5}.4\dfrac{3}{7}\right)\)
d) \(\left(3\dfrac{2}{9}.\dfrac{15}{23}.1\dfrac{7}{29}\right):\dfrac{5}{23}\)
a: =11+3/4-6-5/6+4+1/2+1+2/3
=10+9/12-10/12+6/12+8/12
=10+13/12=133/12
b: \(=2+\dfrac{17}{20}-1-\dfrac{11}{15}+2+\dfrac{3}{20}\)
=3-11/15
=34/15
c: \(=\dfrac{31}{7}:\left(\dfrac{7}{5}\cdot\dfrac{31}{7}\right)\)
\(=\dfrac{31}{7}:\dfrac{31}{5}=\dfrac{5}{7}\)
d: \(=\dfrac{29}{8}\cdot\dfrac{36}{29}\cdot\dfrac{15}{23}\cdot\dfrac{23}{5}=\dfrac{9}{2}\cdot3=\dfrac{27}{2}\)
\(\dfrac{45^{10}\cdot5^{20}}{75^{15}}\)
\(\dfrac{6^6+6^3+3^3+3^6}{-73}\)
\(\dfrac{27^7+3^{15}}{9^9-27}\)
\(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(\dfrac{45^{10}\cdot5^{20}}{75^{15}}=\dfrac{\left(3^2\cdot5\right)^{10}\cdot5^{20}}{\left(3\cdot5^2\right)^{15}}=\dfrac{3^{20}\cdot5^{10}\cdot5^{20}}{3^{15}\cdot5^{30}}=3^5=243\\ \dfrac{6^6+6^3+3^3+3^6}{-73}=\dfrac{46656+216+27+729}{-73}=-\dfrac{47628}{73}\\ \dfrac{27^7+3^{15}}{9^9-27}=\dfrac{\left(3^3\right)^7+3^{15}}{\left(3^2\right)^9-3^3}=\dfrac{3^{21}+3^{15}}{3^{18}-3^3}=\dfrac{3^{15}\left(3^6+1\right)}{3^3\left(3^{15}-1\right)}=\dfrac{3^5\cdot730}{3^{15}-1}\\ \dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)
Thực hiện phép tính (hợp lí nếu có thể):
a) (\(\dfrac{-6}{11}\)) . \(\dfrac{7}{10}\) . \(\dfrac{11}{-6}\) . (-20)
b) (\(-1\dfrac{1}{2}\)) : \(\dfrac{3}{4}\) . \(-4\dfrac{1}{2}\))
c) \(13\dfrac{2}{7}\) : (\(\dfrac{-8}{9}\)) + \(2\dfrac{5}{7}\) : (\(\dfrac{-8}{9}\))
\(a.\left[-\dfrac{6}{11}.\dfrac{11}{-6}\right].\dfrac{7}{10}.\left(-20\right)=1.7.\left(-2\right)=-14\)
\(b.\dfrac{-1}{2}:\dfrac{3}{4}.\dfrac{-7}{2}=\dfrac{7}{4}:\dfrac{3}{4}=\dfrac{7}{3}\)
\(c.\dfrac{93}{7}:-\dfrac{8}{9}+\dfrac{19}{7}:\dfrac{-8}{9}=\left(\dfrac{93}{7}+\dfrac{19}{7}\right):-\dfrac{8}{9}=\dfrac{-9}{8}.\dfrac{112}{7}=-18\)
Tìm x, biết:
a) \(\dfrac{3}{4}x\) - \(\dfrac{7}{12}\) = \(\dfrac{5}{6}\) - \(\dfrac{2}{3}\)
b) -\(\dfrac{5}{x}\) = \(\dfrac{20}{28}\)
c) \(2\dfrac{1}{3}\) : x = 7
d) \(\dfrac{-105}{12}\) < x < \(\dfrac{20}{7}\)
\(a,\dfrac{3}{4}x-\dfrac{7}{12}=\dfrac{5}{6}-\dfrac{2}{3}\\ \Rightarrow\dfrac{3}{4}x-\dfrac{7}{12}=\dfrac{1}{6}\\ \Rightarrow\dfrac{3}{4}x=\dfrac{1}{6}+\dfrac{7}{12}\\ \Rightarrow\dfrac{3}{4}x=\dfrac{3}{4}\\ \Rightarrow x=\dfrac{3}{4}:\dfrac{3}{4}\\ \Rightarrow x=1\\ b,\dfrac{-5}{x}=\dfrac{20}{28}\\ \Rightarrow\dfrac{-5}{x}=\dfrac{5}{7}\\ \Rightarrow\dfrac{-5}{x}=\dfrac{-5}{-7}\\ \Rightarrow x=-7\\ c,2\dfrac{1}{3}:x=7\\ \Rightarrow\dfrac{7}{3}:x=7\\ \Rightarrow x=\dfrac{7}{3}:7\\ \Rightarrow x=\dfrac{1}{3}\)
\(d,\dfrac{-105}{12}< x< \dfrac{20}{7}\Rightarrow x\in\left\{-8;-7;...;2\right\}\)
a: \(\Leftrightarrow x\cdot\dfrac{3}{4}=\dfrac{3}{4}\)
hay x=1
b: \(\Leftrightarrow x=\dfrac{-28\cdot5}{20}=-7\)
c: \(\Leftrightarrow x=\dfrac{7}{3}:7=\dfrac{1}{3}\)
d: \(\Leftrightarrow-8< x< 3\)
hay \(x\in\left\{-7;-6;-5;-4;-3;-2;-1;0;1;2\right\}\)
\(a)\dfrac{3}{4}x-\dfrac{7}{12}=\dfrac{1}{6}\\ \dfrac{3}{4}x=\dfrac{1}{6}+\dfrac{7}{12}\\ \dfrac{3}{4}x=\dfrac{2}{3}\\ x=\dfrac{2}{3}:\dfrac{3}{4}\\ x=\dfrac{8}{9}\\ b)-\dfrac{5}{x}=\dfrac{20}{28}\\ -5\cdot28=x\cdot20=-140\\ x=-140:20\\ x=-7\\ c)\dfrac{7}{3}:x=7\\ x=\dfrac{7}{3}:7\\ x=\dfrac{1}{3}\)
\(\dfrac{1}{\sqrt{49+20\sqrt{6}}}-\dfrac{1}{\sqrt{49-20\sqrt{6}}}+\dfrac{1}{\sqrt{7-4\sqrt{3}}}\)
\(\dfrac{1}{\sqrt{49+20\sqrt{6}}}-\dfrac{1}{\sqrt{49-20\sqrt{6}}}+\dfrac{1}{\sqrt{7-4\sqrt{3}}}\)
\(=\dfrac{1}{\sqrt{5^2+2\cdot2\sqrt{6}\cdot5+\left(2\sqrt{6}\right)^2}}-\dfrac{1}{\sqrt{5^2-2\cdot2\sqrt{6}\cdot5+\left(2\sqrt{6}\right)^2}}+\dfrac{1}{\sqrt{2^2-2\cdot2\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}}\)
\(=\dfrac{1}{\sqrt{\left(5+2\sqrt{6}\right)^2}}-\dfrac{1}{\sqrt{\left(5-2\sqrt{6}\right)^2}}+\dfrac{1}{\sqrt{\left(2-\sqrt{3}\right)^2}}\)
\(=\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}+\dfrac{1}{2-\sqrt{3}}\)
\(=\dfrac{5-2\sqrt{6}}{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)}-\dfrac{5+2\sqrt{6}}{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)}+\dfrac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
\(=\dfrac{5-2\sqrt{6}-5-2\sqrt{6}}{1}+\dfrac{2+\sqrt{3}}{1}\)
\(=-4\sqrt{6}+2+\sqrt{3}\)
\(=\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}+\dfrac{1}{2-\sqrt{3}}\)
\(=5-2\sqrt{6}-5-2\sqrt{6}+2+\sqrt{3}\)
\(=2-4\sqrt{6}+\sqrt{3}\)
\(=\dfrac{1}{\sqrt{\sqrt{25}^2+2.\sqrt{25}.\sqrt{24}+\sqrt{24}^2}}-\dfrac{1}{\sqrt{\sqrt{25}^2-2.\sqrt{25}.\sqrt{24}+\sqrt{24}^2}}+\dfrac{1}{\sqrt{\sqrt{4}^2-2\sqrt{4}\sqrt{3}+\sqrt{3}^2}}\\ =\dfrac{1}{\sqrt{\left(\sqrt{25}+\sqrt{24}\right)^2}}-\dfrac{1}{\sqrt{\left(\sqrt{25}-\sqrt{24}\right)^2}}+\dfrac{1}{\sqrt{\left(\sqrt{4}-\sqrt{3}\right)^2}}\\ =\dfrac{1}{5+\sqrt{24}}-\dfrac{1}{5-\sqrt{24}}+\dfrac{1}{2-\sqrt{3}}\)
\(=\dfrac{5-\sqrt{24}}{25-24}-\dfrac{5+\sqrt{24}}{25-24}+\dfrac{2+\sqrt{3}}{4-3}\\ =5-\sqrt{24}-5-\sqrt{24}+2+\sqrt{3}\\ =2-4\sqrt{6}+\sqrt{3}\)
1)\(\dfrac{1}{2}+\dfrac{13}{19}-\dfrac{4}{9}+\dfrac{6}{19}+\dfrac{5}{18}\)
2)\(\dfrac{ }{\dfrac{-20}{23}+\dfrac{2}{3}-\dfrac{3}{23}+\dfrac{2}{5}+\dfrac{7}{15}}\)
3)\(\dfrac{ }{\dfrac{4}{3}+\dfrac{-11}{31}+\dfrac{3}{10}-\dfrac{20}{31}-\dfrac{2}{5}}\)
4)\(\dfrac{ }{\dfrac{5}{7}.\dfrac{5}{11}+\dfrac{5}{7}.\dfrac{2}{11}-\dfrac{5}{7}.\dfrac{14}{11}}\)
1) \(\dfrac{1}{2}+\dfrac{13}{19}-\dfrac{4}{9}+\dfrac{6}{19}+\dfrac{5}{18}\)
\(=\dfrac{1}{2}+\left(\dfrac{13}{19}+\dfrac{6}{19}\right)-\dfrac{4}{9}+\dfrac{5}{18}\)
\(=\dfrac{3}{2}-\dfrac{4}{9}+\dfrac{5}{18}\)
\(=\dfrac{19}{18}+\dfrac{5}{18}\)
\(=\dfrac{24}{18}\)
\(=\dfrac{4}{3}\)
2) \(\dfrac{-20}{23}+\dfrac{2}{3}-\dfrac{3}{23}+\dfrac{2}{5}+\dfrac{7}{15}\)
\(=\left(-\dfrac{20}{23}-\dfrac{3}{23}\right)+\dfrac{2}{3}+\dfrac{2}{5}+\dfrac{7}{15}\)
\(=-1+\dfrac{2}{3}+\dfrac{2}{5}+\dfrac{7}{15}\)
\(=-\dfrac{1}{3}+\dfrac{2}{5}+\dfrac{7}{15}\)
\(=\dfrac{1}{15}+\dfrac{7}{15}\)
\(=\dfrac{8}{15}\)
3) \(\dfrac{4}{3}+\dfrac{-11}{31}+\dfrac{3}{10}-\dfrac{20}{31}-\dfrac{2}{5}\)
\(=\left(\dfrac{-11}{31}-\dfrac{20}{31}\right)+\dfrac{4}{3}+\dfrac{3}{10}-\dfrac{2}{5}\)
\(=-1+\dfrac{4}{3}+\dfrac{3}{10}-\dfrac{2}{5}\)
\(=\dfrac{1}{3}+\dfrac{3}{10}-\dfrac{2}{5}\)
\(=\dfrac{1}{3}-\dfrac{1}{10}\)
\(=\dfrac{7}{30}\)
4) \(\dfrac{5}{7}.\dfrac{5}{11}+\dfrac{5}{7}.\dfrac{2}{11}-\dfrac{5}{7}.\dfrac{14}{11}\)
\(=\dfrac{5}{7}.\left(\dfrac{5}{11}+\dfrac{2}{11}-\dfrac{14}{11}\right)\)
\(=\dfrac{5}{7}.-\dfrac{7}{11}\)
\(=-\dfrac{35}{77}\)
\(=-\dfrac{5}{11}\)
Thực hiện phép tính (hợp lí nếu có thể):
a) \(13\dfrac{2}{7}\) : (\(\dfrac{-8}{9}\)) + \(2\dfrac{5}{7}\) : (\(\dfrac{-8}{9}\))
b) (\(\dfrac{-6}{11}\)) . \(\dfrac{7}{10}\) . (\(\dfrac{11}{-6}\)) . (-20)
c) (\(-1\dfrac{1}{2}\)) : \(\dfrac{3}{4}\) . (\(-4\dfrac{1}{2}\))
a) \(=\left(13\dfrac{2}{7}+2\dfrac{5}{7}\right):\left(-\dfrac{8}{9}\right)\)
\(=16:\dfrac{-8}{9}=\dfrac{-8\cdot\left(-2\right)\cdot9}{-8}=-18\)
b)
\(=\left(\dfrac{-6}{11}\cdot\dfrac{11}{-6}\right)\cdot\dfrac{7\cdot10\cdot\left(-2\right)}{10}\)
\(=-14\)
c) \(=\dfrac{-1}{2}\cdot\dfrac{4}{3}\cdot\dfrac{-7}{2}\)
\(=\dfrac{-1\cdot2\cdot2\cdot\left(-7\right)}{2\cdot3\cdot2}=\dfrac{7}{3}\)
1.Thực hiện phép tính
a) \(\dfrac{4}{5}\) + \(\dfrac{6}{5}\) : \(\dfrac{7}{15}\) - \(\dfrac{3}{7}\)
b) \(\dfrac{9}{13}\) . \(\dfrac{5}{3}\) + \(\dfrac{-6}{13}\) .\(\dfrac{9}{13}\) - \(\dfrac{9}{13}\) . \(\dfrac{20}{13}\)
2.Tìm x,biết:
a) \(\dfrac{2}{5}\) . x - \(\dfrac{1}{3}\) = 1\(\dfrac{2}{3}\)
b) \(\dfrac{4}{9}\) - \(\dfrac{5}{9}\) : x = \(\dfrac{7}{3}\)
c) \(\dfrac{4}{5}\) . x + \(\dfrac{-7}{3}\) . x = \(\dfrac{\left(-2\right)^3}{5}\)
Tìm các số nguyên x và y, biết:
a)\(\dfrac{x}{7}=\)\(\dfrac{6}{21}\) b)\(\dfrac{-5}{y}\)= \(\dfrac{20}{28}\)
c)\(\dfrac{-4}{8}=\)\(\dfrac{-7}{y}\)
Lời giải:
a. $\frac{x}{7}=\frac{6}{21}$
$x=\frac{6}{21}.7$
$x=2$
b.
$\frac{-5}{y}=\frac{20}{28}$
$y=-5:\frac{20}{28}$
$y=-7$
c.
$\frac{-4}{8}=\frac{-7}{y}$
$y=-7:\frac{-4}{8}$
$y=14$
a, \(\dfrac{x}{7}=\dfrac{6}{21}\Leftrightarrow\dfrac{3x}{21}=\dfrac{6}{21}\Rightarrow x=2\)
b, \(\dfrac{-5}{y}=\dfrac{20}{28}\Leftrightarrow\dfrac{20}{-4y}=\dfrac{20}{28}\Leftrightarrow y=-7\)
c, \(\dfrac{-4}{8}=-\dfrac{7}{y}\Rightarrow-4y=-56\Leftrightarrow y=14\)
a) Ta có: \(\dfrac{x}{7}=\dfrac{6}{21}\)
nên \(x=\dfrac{6\cdot7}{21}=\dfrac{42}{21}=2\)
b) Ta có: \(\dfrac{-5}{y}=\dfrac{20}{28}\)
nên \(y=\dfrac{-5\cdot28}{20}=\dfrac{-140}{20}=-7\)
c) Ta có: \(\dfrac{-4}{8}=\dfrac{-7}{y}\)
nên \(y=\dfrac{-7\cdot8}{-4}=\dfrac{-56}{-4}=14\)