phân tích thành nhân tử
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
1) Đa thức\(\left(x^2+x+1\right)\left(X^2+x+2\right)\)-12 được phân tích thành nhân tử là:
A)\(\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)
B)\(\left(x^2+x-5\right)\left(x+2\right)\left(x-1\right)\)
C)\(\left(x^2-x+5\right)\left(x+2\right)\left(x-1\right)\)
D)\(\left(x^2+x+5\right)\left(x-2\right)\left(x+1\right)\)
2) \(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\) được phân tích thành nhân tử là:
A)\(\left(x^2+5ax-5a^2\right)\left(x^2-5ax+5a^2\right)\)
B)\(\left(x^2-5ax-5a^2\right)\left(x^2+5ax+5a^2\right)\)
C)\(\left(x^2-5ax-5a^2\right)\left(x^2-5ax+5a^2\right)\)
D)\(\left(x^2+5ax+5a^2\right)^{^2}\)
3) Đa thức \(a^3+b^3+c^3-3abc\) được phân tích thành nhân tử là:
A)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab+bc-ca\right)\)
B)\(\left(a-b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
C)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
D)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab+bc-ca\right)\)
4) Đa thức x(x+1)(x+2)(x+3)+1 được phân tích thành nhân tử là:
A)\(\left(x^2+3x+1\right)\left(x^2+3x-1\right)\)
B)\(\left(x^2+3x+1\right)^{^2}\)
C)\(\left(x^2+3x+1\right)\left(x^2-3x+1\right)\)
D) Cả B và C đều sai
5) Câu trả lời đúng cho M=\(n^2\left(n+1\right)+2n\left(n+1\right)+360\) với \(n\in Z\)
A)M⋮4
B)M⋮5
C)M⋮6
D)M⋮9
6)Cho \(P=\left(2n+5\right)^{^2}-145\) với \(n\in N\)
A) P⋮4 ; B)P⋮3 ; C) P⋮5 ; D)P⋮6
7) Giá trị của biểu thức \(x^2-y^2-2y-1\) tại
x=502 ; y=497 là:
A) 3000
B)5000
C)4500
D) cả A và B đều sai
Bạn nên tách bài ra để đăng. Không nên đăng 1 loạt như thế này.
1) Đa thức\(\left(x^2+x+1\right)\left(X^2+x+2\right)\)-12 được phân tích thành nhân tử là:
A)\(\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)
B)\(\left(x^2+x-5\right)\left(x+2\right)\left(x-1\right)\)
C)\(\left(x^2-x+5\right)\left(x+2\right)\left(x-1\right)\)
D)\(\left(x^2+x+5\right)\left(x-2\right)\left(x+1\right)\)
2) \(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\) được phân tích thành nhân tử là:
A)\(\left(x^2+5ax-5a^2\right)\left(x^2-5ax+5a^2\right)\)
B)\(\left(x^2-5ax-5a^2\right)\left(x^2+5ax+5a^2\right)\)
C)\(\left(x^2-5ax-5a^2\right)\left(x^2-5ax+5a^2\right)\)
D)\(\left(x^2+5ax+5a^2\right)^{^2}\)
3) Đa thức \(a^3+b^3+c^3-3abc\) được phân tích thành nhân tử là:
A)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab+bc-ca\right)\)
B)\(\left(a-b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
C)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
D)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab+bc-ca\right)\)
5) Câu trả lời đúng cho M=\(n^2\left(n+1\right)+2n\left(n+1\right)+360\) với \(n\in Z\)
A)M⋮4
B)M⋮5
C)M⋮6
D)M⋮9
6)Cho \(P=\left(2n+5\right)^{^2}-145\) với \(n\in N\)
A) P⋮4 ; B)P⋮3 ; C) P⋮5 ; D)P⋮6
7) Giá trị của biểu thức \(x^2-y^2-2y-1\) tại
x=502 ; y=497 là:
A) 3000
B)5000
C)4500
D) cả A và B đều sai
1: \(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)
=(x^2+x)^2+3(x^2+x)-10
=(x^2+x+5)(x^2+x-2)
=(x^2+x+5)(x+2)(x-1)
2: \(=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4\)
\(=\left(x^2+5ax\right)^2+10a^2\left(x^2+5ax\right)+25a^2\)
\(=\left(x^2+5ax+5a^2\right)^2\)
3: \(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
5: \(M=\left(n+1\right)\left(n^2+2n\right)+360\)
=n(n+1)(n+2)+360 chia hết cho 6
6A
7D
Phân tích đa tử thành nhân tử
\(\left(x^2+x-1\right)\left(x^2+x+2\right)-12\)
Sai đề nhé bạn
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt \(x^2+x+1=t\)
Đa thức trở thành \(t\left(t+1\right)-12\)
\(=t^2+t-12\)
\(=t^2+3t-4t-12\)
\(=t\left(t+3\right)-4\left(t+3\right)\)
\(=\left(t+3\right)\left(t-4\right)\)
Thay vào ta được
\(\left(x^2+x+4\right)\left(x^2+x-3\right)\)
Phân tích đa thức thành nhân tử (mn giải chi tiết 1 xíu cho mk nhé)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt \(x^2+x+1=t\)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12=t\left(t+1\right)-12=t^2+t-12=\left(t^2+t+\dfrac{1}{4}\right)-\dfrac{49}{4}=\left(t+\dfrac{1}{2}\right)^2-\left(\dfrac{7}{2}\right)^2=\left(t+\dfrac{1}{2}-\dfrac{7}{2}\right)\left(t+\dfrac{1}{2}+\dfrac{7}{2}\right)=\left(t-3\right)\left(t+4\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
= \(\left(x^2+x+1\right)\left[\left(x^2+x+1\right)+1\right]-12\)
= \(\left(x^2+x+1\right)^2\left(x^2+x+1\right)-12\)
= \(\left(x^2+x+1\right)\left(x^2+x+1\right)-3\left(x^2+x+1\right)+4\left(x^2+x+1\right)-4.3\)
= \(\left(x^2+x+1\right)\left(x^2+x-2\right)+4\left(x^2+x-2\right)\)
= \(\left(x^2+x+5\right)\left(x^2+x-2\right)\)
Phân tích thành nhân tử:
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+12\right)-165x^2\)
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+12\right)-165x^2\)
\(=\left[\left(x+2\right)\left(x+12\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]-165x^2\)
\(=\left(x^2+14x+24\right)\left(x^2+10x+24\right)-165x^2\)
\(=\left(x^2+12x+24+2x\right)\left(x^2+12x+24-2x\right)-165x^2\)
\(=\left(x^2+12x+24\right)^2-4x^2-165x^2\)
\(=\left(x^2+12x+24\right)^2-169x^2\)
\(=\left(x^2+12x+24-13x\right)\left(x^2+12x+24+13x\right)\)
\(=\left(x^2-x+24\right)\left(x^2+25x+24\right)\)
\(=\left(x^2-x+24\right)\left(x^2+x+24x+24\right)\)
\(=\left(x^2-x+24\right)\left[x\left(x+1\right)+24\left(x+1\right)\right]\)
\(=\left(x^2-x+24\right)\left(x+1\right)\left(x+24\right)\)
phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ
\(a.\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
\(b.\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
\(c.\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
trong sách
nâng cao và
phát triển toán 8
kìa
Em hãy sử dụng phương pháp đặt ẩn phụ nha !!! a, gọi x2+x=a . khi đó đa thức đó trở thành ; a2+4a-12 . đến đoạn đó rồi em sẽ dễ dàng giải được . b, goi x2+x+1=m suy ra x2+x+2=m-1 , khi đó đa thuc trở thành ; m(m+1)-12 giải tiếp nha .
phân tích thành nhân tử
\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)
\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)
\(=3\left(x^4+x^2+1\right)-\left(x^4+x^2+1+2x^3+2x^2+2x\right)\)
\(=2\left(x^4+x^2+1\right)-2\left(x^3+x^2+x\right)\)
\(=2\left(x^4+x^2+1-x^3-x^2-x\right)\)
\(=2\left(x^4-x^3-x+1\right)\)
\(=2\left(x^3\left(x-1\right)-\left(x-1\right)\right)\)
\(=2\left(x-1\right)\left(x^3-1\right)\)
\(=2\left(x-1\right)^2\left(x^2+x+1\right)\)
\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)
\(=3\left[x^4+2x^2+1-x^2\right]-\left(x^2+x+1\right)^2\)
\(=3\left[\left(x^2+1\right)^2-x^2\right]-\left(x^2+x+1\right)^2\)
\(=3\left(x^2+x+1\right)\left(x^2-x+1\right)-\left(x^2+x+1\right)^2\)
\(=\left(x^2+x+1\right)\left(3x^2-3x+3-x^2-x-1\right)\)
\(=\left(x^2+x+1\right)\left(2x^2-4x+2\right)\)
\(=2\left(x-1\right)^2\cdot\left(x^2+x+1\right)\)
Phân tích thành nhân tử:
\(4\left(x+5\right)\left(x+6\right)\left(x+10\right)\left(x+12\right)-3x^2\)
\(\left(x^2+x\right)^2+\left(x^2+x+2\right)-12\\ \)
Phân tích đa thức thành nhân tử
Sai đề rồi đa thức này không có nghiêm làm sao phân tích được