Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Khánh Chi
Xem chi tiết
Minh Hiếu
15 tháng 11 2021 lúc 20:48

a) Với p=2

⇒ 5p+3=13 (TM)

Với p>2 

⇒ p=2k+1

⇒ 5p+3=5(2k+1)+3

             =10k+8 ⋮2

⇒ là hợp số (L)

Vậy p=2

Nguyễn Tất  Hùng
Xem chi tiết
Xem chi tiết
👁💧👄💧👁
26 tháng 2 2021 lúc 17:13

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

👁💧👄💧👁
26 tháng 2 2021 lúc 17:19

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

👁💧👄💧👁
26 tháng 2 2021 lúc 17:30

Bài 3:

a) Nếu p = 2 thì p + 4 = 2 + 4 = 6 không là số nguyên tố

p + 8 = 2 + 8 = 10 không là số nguyên tố

Vậy p = 2 không thỏa mãn

 Nếu p = 3 thì p + 4 = 3 + 4 = 7 là số nguyên tố

p + 8 = 3 + 8 = 11 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2

Nếu p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) không là số nguyên tố

p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p > 3 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất

Đăng Bùi
Xem chi tiết
Đăng Bùi
22 tháng 9 2023 lúc 16:54

giúp mik đi 

xin đấy

Đăng Bùi
25 tháng 9 2023 lúc 22:14

app như cc

hỏi ko ai trả lời

Nguyễn Bảo Minh
Xem chi tiết
HT.Phong (9A5)
28 tháng 10 2023 lúc 9:41

Bài 18:

Ta có:

\(2015^{2015}-2015^{2014}=2015^{2014}\cdot\left(2015-1\right)=2015^{2014}\cdot2014\)

\(2015^{2016}-2015^{2015}=2015^{2015}\cdot\left(2015-1\right)=2015^{2015}\cdot2014\)

Mà: \(2014< 2015\)

\(\Rightarrow2015^{2014}< 2015^{2015}\)

\(\Rightarrow2015^{2014}\cdot2014< 2015^{2015}\cdot2014\)

\(\Rightarrow2015^{2015}-2015^{2014}< 2015^{2016}-2015^{2015}\)

Vậy: ... 

14	Nguyễn Minh	Hùng
28 tháng 10 2023 lúc 9:47

6 : (x-2)

Phongg
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 12 2023 lúc 19:07

Bài 10:

a: 2x-3 là bội của x+1

=>\(2x-3⋮x+1\)

=>\(2x+2-5⋮x+1\)

=>\(-5⋮x+1\)

=>\(x+1\in\left\{1;-1;5;-5\right\}\)

=>\(x\in\left\{0;-2;4;-6\right\}\)

b: x-2 là ước của 3x-2

=>\(3x-2⋮x-2\)

=>\(3x-6+4⋮x-2\)

=>\(4⋮x-2\)

=>\(x-2\inƯ\left(4\right)\)

=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(x\in\left\{3;1;4;0;6;-2\right\}\)

Bài 14:

a: \(4n-5⋮2n-1\)

=>\(4n-2-3⋮2n-1\)

=>\(-3⋮2n-1\)

=>\(2n-1\inƯ\left(-3\right)\)

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

=>\(2n\in\left\{2;0;4;-2\right\}\)

=>\(n\in\left\{1;0;2;-1\right\}\)

mà n>=0

nên \(n\in\left\{1;0;2\right\}\)

b: \(n^2+3n+1⋮n+1\)

=>\(n^2+n+2n+2-1⋮n+1\)

=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)

=>\(-1⋮n+1\)

=>\(n+1\in\left\{1;-1\right\}\)

=>\(n\in\left\{0;-2\right\}\)

mà n là số tự nhiên

nên n=0

Nguyễn Lê Phước Thịnh
4 tháng 12 2023 lúc 23:21

Bài 16:

a: \(\left(x+5\right)\left(y-3\right)=15\)

=>\(\left(x+5\right)\left(y-3\right)=1\cdot15=15\cdot1=\left(-1\right)\cdot\left(-15\right)=\left(-15\right)\cdot\left(-1\right)=3\cdot5=5\cdot3=\left(-3\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-3\right)\)

=>\(\left(x+5;y-3\right)\in\left\{\left(1;15\right);\left(15;1\right);\left(-1;-15\right);\left(-15;-1\right);\left(3;5\right);\left(5;3\right);\left(-3;-5\right);\left(-5;-3\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(-4;18\right);\left(10;4\right);\left(-6;-12\right);\left(-20;2\right);\left(-2;8\right);\left(0;6\right);\left(-8;-2\right);\left(-10;0\right)\right\}\)

mà (x,y) là cặp số tự nhiên

nên \(\left(x,y\right)\in\left\{\left(10;4\right);\left(0;6\right)\right\}\)

b: x là số tự nhiên

=>2x-1 lẻ và 2x-1>=-1

\(\left(2x-1\right)\left(y+2\right)=24\)

mà 2x-1>=-1 và 2x-1 lẻ

nên \(\left(2x-1\right)\cdot\left(y+2\right)=\left(-1\right)\cdot\left(-24\right)=1\cdot24=3\cdot8\)

=>\(\left(2x-1;y+2\right)\in\left\{\left(-1;-24\right);\left(1;24\right);\left(3;8\right)\right\}\)

=>\(\left(2x;y\right)\in\left\{\left(0;-26\right);\left(2;22\right);\left(4;6\right)\right\}\)

=>\(\left(x;y\right)\in\left\{\left(0;-26\right);\left(1;11\right);\left(2;6\right)\right\}\)

mà (x,y) là cặp số tự nhiên

nên \(\left(x,y\right)\in\left\{\left(1;11\right);\left(2;6\right)\right\}\)

c:

x,y là các số tự nhiên

=>x+3>=3 và y+2>=2

xy+2x+3y=0

=>\(xy+2x+3y+6=6\)

=>\(x\left(y+2\right)+3\left(y+2\right)=6\)

=>\(\left(x+3\right)\left(y+2\right)=6\)

mà x+3>=3 và y+2>=2

nên \(\left(x+3\right)\cdot\left(y+2\right)=3\cdot2\)

=>x=0 và y=0

d: xy+x+y=30

=>\(xy+x+y+1=31\)

=>\(x\left(y+1\right)+\left(y+1\right)=31\)

=>\(\left(x+1\right)\left(y+1\right)=31\)

\(\Leftrightarrow\left(x+1\right)\cdot\left(y+1\right)=1\cdot31=31\cdot1=\left(-1\right)\cdot\left(-31\right)=\left(-31\right)\cdot\left(-1\right)\)

=>\(\left(x+1;y+1\right)\in\left\{\left(1;31\right);\left(31;1\right);\left(-1;-31\right);\left(-31;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right);\left(-2;-32\right);\left(-32;-2\right)\right\}\)

mà (x,y) là cặp số tự nhiên

nên \(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right)\right\}\)

Vũ Ngọc Diệp
Xem chi tiết
Phước Lộc
8 tháng 1 2023 lúc 21:02

\(a+2⋮a-1\)

\(=>\left(a-1\right)+3⋮a-1\)

\(\)Vì \(a-1⋮a-1\) mà \(\left(a-1\right)+3⋮a-1\)

\(=>3⋮a-1\)

\(=>a\in\text{Ư}\left(3\right)=\left\{-3;-1;1;3\right\}\)

Ngô Hải Nam
8 tháng 1 2023 lúc 21:03

co a+2=a-1+3

de a+2 chia het cho a-1 thi 3 chia het cho a-1

=> a-1 thuoc uoc cua 3

ma U(3)∈{-1;1;-3;3}

ta co bang sau

a-1-11-33
a02-24

 

vay...

 

⭐Hannie⭐
8 tháng 1 2023 lúc 21:05

\(\left(a+2\right)⋮\left(a-1\right)\)

\(\left(a-1+3\right)⋮\left(a-1\right)\) 

\(\text{ }\Rightarrow a-1\in\text{Ư}\left(3\right)=\left\{\pm1;\pm3\right\}\)

`+, a-1=1 => a=2`

`+,a-1=-1=>a=0`

`+, a-1=3=>x=4`

`+,a-1=-3=>a=-2`

vậy \(a\in\left\{2;0;4;-2\right\}\)

 

Nguyễn Thị Thanh Nga
Xem chi tiết
Trần Thị Loan
21 tháng 10 2015 lúc 20:54

1) +) Nếu cả hai số nguyên tố đều > 3 => 2 số đó lẻ => tổng và hiệu của chúng là số chẵn => Loại

=> Trong hai số đó có 1 số bằng 2. gọi số còn lại là a

+) Nếu a =  3 : ta có 3 + 2 = 5 ; 3 -2 = 1, 1 không là số nguyên tố => Loại

+) Nếu  > 3 thì có thể có dạng: 3k + 1 ( k \(\in\)N*) hoặc 3k + 2 (k \(\in\) N*)

Khi a = 3k + 1 => a+ 2 = 3k + 3 = 3.(k + 1) là hợp số với k \(\in\) N* => Loại

Khi a = 3k + 2 => a + 2 = 3k + 4 ; a - 2 = 3k . 3k; 3k + 4 đều  là số nguyên tố với k = 1 . Với k > 1 thì 3k là hợp số nên Loại

Vậy a = 3. 1+ 2 = 5

Vậy chỉ có 2 số 2;5 thỏa mãn

 

Thân Khánh Hải Quân
25 tháng 4 2020 lúc 21:10

hay đó

Khách vãng lai đã xóa
HOÀNG HUỲNH NGỌC HOAN
13 tháng 11 2021 lúc 19:26

xịn quá

Khách vãng lai đã xóa
buiphutrong
Xem chi tiết
Tran Thi Thao Ly
Xem chi tiết
Lê Thị Bích Tuyền
1 tháng 11 2015 lúc 19:36

Bài 2 : c)

+Nếu p = 2 ⇒ p + 2 = 4 (loại)

+Nếu p = 3 ⇒ p + 6 = 9 (loại)

+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)

+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4

   -Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)

   -Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)

   -Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)

   -Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)

⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn

Vậy p = 5 là giá trị cần tìm
Bài 4 : Tích của hai số tự nhiên là số nguyên tố nên một số là 1, số còn lại (kí hiệu a) là số nguyên tố.

Theo đề bài, 1 + a cũng là số nguyên tố. Xét hai trường hợp : 

 - Nếu 1 + a là số lẻ thì a là số chẵn. Do a là ....
Còn lại bạn tự làm nha , mình mỏi tay quá !