\(\dfrac{-2}{3}xy^2z.\left(-3x^2y\right)\)
1.Tính: \(\left(\dfrac{-2}{3}x^3y^2z\right).5xy^2z^2\)
2. Tính GTBT M= \(\dfrac{2x^2y-1,2\left(3x-2y\right)}{xy}\)tại x=\(\dfrac{1}{2}\); y= 2
2: Thay \(x=\dfrac{1}{2}\) và y=2 vào M, ta được:
\(M=\dfrac{2\cdot\left(\dfrac{1}{2}\right)^2\cdot2-1.2\cdot\left(3\cdot\dfrac{1}{2}-2\cdot2\right)}{\dfrac{1}{2}\cdot2}\)
\(=4\cdot\dfrac{1}{4}-1.2\left(\dfrac{3}{2}-4\right)\)
\(=1-1.8+4.8\)
\(=4\)
1: Ta có: \(\left(-\dfrac{2}{3}x^3y^2\right)z\cdot5xy^2z^2\)
\(=\left(-\dfrac{2}{3}\cdot5\right)\cdot\left(x^3\cdot x\right)\cdot\left(y^2\cdot y^2\right)\cdot\left(z\cdot z^2\right)\)
\(=\dfrac{-10}{3}x^4y^4z^3\)
Tính tổng :
a) \(x^2+5x^2+\left(-3x^2\right)\)
b) \(5xy^2+\dfrac{1}{2}xy^2+\dfrac{1}{4}xy^2+\left(-\dfrac{1}{2}\right)xy^2\)
c) \(3x^2y^2z^2+x^2y^2z^2\)
a) x2+5x2+(−3x2)=3x2
b) 5xy2+12xy2+14xy2+(−12)xy2=19xy2
c) 3x2y2z2+x2y2z2=4x2y2z2
1) Thu gọn các đơn thức sau và tìm bậc:
a) \(\dfrac{1}{2}x^2.\left(-2x^2y^2z\right).\dfrac{-1}{3}x^2y^3\)
b) \(\left(-x^2y\right)^3.\dfrac{1}{2}x^2y^3.\left(-2xy^2z\right)^2\)
2) Thu gọn:
a) \(\left(-6x^3zy\right)\left(\dfrac{2}{3}yx^2\right)^2\)
b) \(\left(xy-5x^2y^2+xy^2-xy^2\right)-\left(x^2y^2+3xy^2-9x^2y\right)\)
3) Tính tổng và hiệu các đơn thức sau:
a) \(2x^2+3x^2-7x^2\)
b) \(5xy-\dfrac{1}{3}xy+xy\)
c) \(15xy^2-\left(-5xy^2\right)\)
1.
a)\(\left(\dfrac{1}{2}\cdot\left(-2\right)\cdot\dfrac{-1}{3}\right)\cdot\left(x^2\cdot x^2\cdot x^2\right)\cdot\left(y^2\cdot y^3\right)\cdot z\)
\(\dfrac{1}{3}x^6y^5z\)
Deg=12
Mấy câu kia tương tự nha cố gắng lên!
A=\(\dfrac{1}{5}x^2y^3+\dfrac{2}{3}x^2y^3-\dfrac{3}{4}x^2y^3+x^2y^3\)
B=\(\left(x^2y\right)^3.\left(\dfrac{1}{2}xy^2z\right)^2\)
Tính A+B,A-B
Helpp..
\(A=x^2y^3\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{3}{4}+1\right)=\dfrac{67}{60}x^2y^3\)
\(B=x^6y^3\cdot\dfrac{1}{4}x^2y^4z^2=\dfrac{1}{4}x^8y^7z^2\)
\(A+B=\dfrac{67}{60}x^2y^3+\dfrac{1}{4}x^8y^7z^2\)
\(A-B=\dfrac{67}{60}x^2y^3-\dfrac{1}{4}x^8y^7z^2\)
B=x6y3⋅14x2y4z2=14x8y7z2B=x6y3⋅14x2y4z2=14x8y7z2
A−B=6760x2y3−14x8y7z2
\(A+B=\dfrac{67}{60}x^2y^3+\left(x^6y^3\right)\left(\dfrac{1}{4}x^2y^4z^2\right)\)
\(=\dfrac{67}{60}x^2y^3+\dfrac{1}{4}x^8y^7z^2\)
\(A-B=\dfrac{67}{60}x^2y^3-\dfrac{1}{4}x^8y^7z^2\)
Tính giá trị của biểu thức
A=
\(\dfrac{1}{5}x^2y^3+\dfrac{2}{3}x^2y^3-\dfrac{3}{4}x^2y^3+x^2y^3\)
B=\(\left(x^2y\right)^3.\left(\dfrac{1}{2}xy^2z\right)^2\)
\(A=\dfrac{1}{5}x^2y^3+\dfrac{2}{3}x^2y^3-\dfrac{3}{4}x^2y^3+x^2y^3=\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{3}{4}+1\right)x^2y^3=\dfrac{67}{60}x^2y^3\\ B=\left(x^2y\right)^3\left(\dfrac{1}{2}xy^2z\right)^2=x^6y^3.\dfrac{1}{4}x^2y^4z^2=\dfrac{1}{4}x^8y^7z^2\)
Viết các đơn thức sau dưới dạng thu gọn :
a) \(-\dfrac{2}{3}xy^2z.\left(-3x^2y\right)^2\)
b) \(x^2yz.\left(2xy\right)^2z\)
a) \(-\dfrac{2}{3}xy^2z.\left(-3x^2y\right)^2\)
= \(-\dfrac{2}{3}xy^2z.9x^4y^2\)
= \(-6x^5y^4z\)
b) \(x^2yz.\left(2xy\right)^2z\)
= \(x^2yz.4x^2y^2z\)
= \(4x^4y^3z^2\)
cho các số thực dương x,y,z thỏa mãn \(x+y+z=\dfrac{3}{xyz}\).CMR
\(\left(2x^2-xy+2y^2\right)\left(2y^2-yz+2z^2\right)\left(2z^2-zx+2x^2\right)\ge27\)
\(\left(xy+yz+zx\right)^2\ge3xyz\left(x+y+z\right)=9\Rightarrow xy+yz+zx\ge3\)
\(2\left(x^2+y^2\right)-xy\ge\left(x+y\right)^2-\dfrac{1}{4}\left(x+y\right)^2=\dfrac{3}{4}\left(x+y\right)^2\)
Tương tự và nhân vế với vế:
\(VT\ge\dfrac{27}{64}\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\)
Mặt khác ta có:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\)
\(\ge\left(x+y+z\right)\left(xy+yz+zx\right)-\sqrt[3]{xyz}.\sqrt[3]{xy.yz.zx}\)
\(\ge\left(x+y+z\right)\left(xy+yz+xz\right)-\dfrac{1}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)
\(=\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\ge\dfrac{8}{9}\sqrt{3\left(xy+yz+zx\right)}.\left(xy+yz+zx\right)\)
\(\Rightarrow VT\ge\dfrac{27}{64}.\dfrac{64}{81}.3\left(xy+yz+zx\right)^3\ge3^3=27\) (đpcm)
Làm tính chia :
a) \(\left(\dfrac{5}{7}x^2y\right)^3:\left(\dfrac{1}{7}xy\right)^3\)
b) \(\left(-x^3y^2z\right)^4:\left(-xy^2z\right)^3\)
a)\(\left(\dfrac{5}{7}x^2y\right)^3:\left(\dfrac{1}{7}xy\right)^3=\dfrac{125}{343}x^5y^3:\dfrac{1}{343}x^3y^3=\left(\dfrac{125}{343}:\dfrac{1}{343}\right)\left(x^5:x^3\right)\left(y^3:y^3\right)=125x^2\)
b)\(\left(-x^3y^2z\right)^4:\left(-xy^2z\right)^3=x^7y^6z^4:x^3y^5z^3=\left(x^7:x^3\right)\left(y^6:y^5\right)\left(z^4:z^3\right)=x^4yz\)
thu gọn các đơn thức sau và tìm bậc
\(\left(-x^2y\right)^3.\dfrac{1}{2}x^2y^3.\left(\dfrac{-42}{9}xy^2z^2\right)\)
Thu gọn đơn thức:
(-x^2y)^3.1/2x^2y^3.(-42/9xy^2z^2)
=(-x^6y^3).1/2x^2y^3.(-42/9xy^2z^2)
=(-1.1.-42/9).(x^6.x^2.x).(y^3.y^3.y^2).z^2
=42/9.x^9.y^8.z^2
Bậc của đơn thức:19
\(\left(-x^2y\right)^3.\dfrac{1}{2}x^2y^3.\left(\dfrac{-42}{9}xy^2z^2\right)\)
\(=\left(\dfrac{1}{2}.\dfrac{-42}{9}\right)\left(x.x^2.x\right).\left(y^3.y^3.y^2.\right).z^2\)
\(=\dfrac{-7}{3}x^4y^8z^2\)
=> Bậc của đơn thức là : 4 + 8 + 2 = 14