Xác định phần biến của đơn thức (4x^2) (-4y^3) (-xy)^2
A. xy
B. x^6y^5
C. x^4y^5
D. x^6y^3
1. Tinh:
a) 4x^2 - x^2 + 8x^2
b) 1/2.x^2.y^2 - 3/4.x^2.y^2 + x^2y^2
c) 3y - 7y + 4y - 6y
2. Thu gọn biểu thức sau:
a) (-2/3.y^3) + 3y^2 - 1/2.y^3 - y^2
b) 5x^3 - 3x^2 + x- x^3 - 4x^2 - x
3. Cho đơn thức A = 5xy^2.(1/2)x^2y^2x
a) Thu gọn đơn thức trên
b) Tìm bậc. Xác định hệ số, phần biến
c) Tính giá trị của A khi x =1; y = -1
1 ) a) \(4x^2-x^2+8x^2\)
\(=\left(4+8\right).x^2+x^2-x^2\)
\(=12.x^3\)
b) \(\frac{1}{2}.x^2.y^2-\frac{3}{4}.x^2.y^2+x^2.y^2\)
\(\left(\frac{1}{2}-\frac{3}{4}\right).x^2.x^2.x^2.+y^2+y^2+y^2\)
\(=-\frac{1}{4}.x^6+y^6\)
c) \(3y-7y+4y-6y\)
\(=\left(3-7+4-6\right).y.y.y.y\)
\(=-6.y^4\)
2)
\(\left(-\frac{2}{3}.y^3\right)+3y^2-\frac{1}{2}.y^3-y^2\)
\(\left(-\frac{2}{3}+3-\frac{1}{2}\right).y^3.y^3-y\)
\(=\frac{25}{6}.y^5\)
b) \(5x^3-3x^2+x-x^3-4x^2-x\)
\(=\left(5-3-4\right).\left(x^3.x^2+x-x^3-x^2-x\right)\)
\(=-2.0=0\)
hông chắc
3)a) \(5xy^2.\frac{1}{2}x^2y^2x\)
\(\left(5.\frac{1}{2}\right).x^2.x^2.x.y^2.y^2\)
\(=\frac{5}{2}.x^5.y^4\)
b) Tổng các bậc của đơn thức là
5+4 = 9
Hệ số của đơn thức là \(\frac{5}{2}\)
Phần biến là x;y
Thay x=1;y=-1 vào đơn thức
\(\frac{5}{2}.1^5.\left(-1\right)^4\)
\(\frac{5}{2}.1.\left(-1\right)\)
\(\frac{5}{2}.\left(-1\right)=-\frac{5}{2}\)
Vậy ....
chắc không đúng đâu uwu
Bài 1: Tìm GTNN của biểu thức sau:
a) A= 2x2 + x
b) B = x2 + 2x + y2- 4y + 6
c) C = 4x2 + 4x + 9y2 - 6y - 5
d) D = (2 + x)( x + 4) - ( x - 1)( x + 3 )2
b) Ta có: \(B=x^2+2x+y^2-4y+6\)
\(=x^2+2x+1+y^2-4y+4+1\)
\(=\left(x+1\right)^2+\left(y-2\right)^2+1\ge1\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Vậy: \(B_{min}=1\) khi (x,y)=(-1;2)
c) Ta có: \(C=4x^2+4x+9y^2-6y-5\)
\(=4x^2+4x+1+9y^2-6y+1-7\)
\(=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(C_{min}=-7\) khi \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)
\(A=2x^2+x=2\left(x^2+\dfrac{1}{2}x\right)=2\left(x^2+2.\dfrac{1}{4}x+\dfrac{1}{16}-\dfrac{1}{16}\right)\)
\(=2\left[\left(x+\dfrac{1}{4}\right)^2-\dfrac{1}{16}\right]\ge-\dfrac{1}{8}\) dấu"=' xảy ra<=>x=\(-\dfrac{1}{4}\)
\(B=x^2+2x+y^2-4y+6\)
\(=x^2+2x+1+y^2-4y+4+1=\left(x+1\right)^2+\left(y-2\right)^2+1\)
\(\ge1\) dấu"=" xảy ra<=>x=-1;y=2
\(C=4x^2+4x+9y^2-6y-5\)
\(=4x^2+4x+1+9y^2-6y+1-7\)
\(=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\)
dấu"=" xảy ra<=>x=\(-\dfrac{1}{2},y=\dfrac{1}{3}\)
\(D=\left(2+x\right)\left(x+4\right)-\left(x-1\right)\left(x+3\right)^2\)
=\(x^2+6x+8-\left(x-1\right)\left(x+3\right)^2\)
\(=\left(x+3\right)^2-1-\left(x-1\right)\left(x+3\right)^2\)
\(=\left(x+3\right)^2\left(2-x\right)-1\ge-1\)
dấu"=" xảy ra\(< =>\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Tìm bậc của các đa thức sau:
a) \(x^3y^3+6x^2y^2+12xy-8
\)
b) \(x^2y+2xy^2-3x^3y+4xy^5\)
c) \(x^6y^2+3x^6y^3-7x^5y^7+5x^4y\)
d) \(2x^3+x^4y^5+3xy^7-x^4y^5+10-xy^7\)
e) \(0,5x^2y^3+3x^2y^3z^3-a.x^2y^3-x^4-x^2y^3\) với a là hằng số
a, bậc 6
b, bậc 6
c, bậc 12
d, bậc 9
e, bậc 8
phân tích đa thức thành nhân tử
a) 4x^2+8xy-3x-6y
b)x^4y-3x^3y^2+3x^2y^3+xy^4
c)x^3-5x^2-14x
d)x^4+4y^4
\(4x^2+8xy-3x-6y=4x\left(x+2y\right)-3\left(x+2y\right)=\left(4x-3\right)\left(x+2y\right)\)
\(x^4y-3x^3y^2+3x^2y^3-xy^4=xy\left(x^3-3x^2y+3xy^2-y^3\right)=xy\left(x-y\right)^3\)
\(x^3-5x^2-14x=x\left(x^2-5x-14\right)=x\left(x^2-7x+2x-14\right)=x\left[x\left(x-7\right)+2\left(x-7\right)\right]=x\left(x-7\right)\left(x+2\right)\)
\(x^4+4y^4=\left(x^2\right)^2+2\times x^2\times2y^2+\left(2y^2\right)^2-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
bài 1: phân tích các đa thức thành nhân tử:
a)x(3-4x)+5(3-4x)
b)2y(5y-6)-4(6-5y)
c)27(x-2)^3-3x(2-x)^2
d)6y(x^2-y^2)-8y(x+y)^2
bài 2:
a)2x^2-xy+2xz-yz
b)x^2-x+2y-4y^2
c)y^2+10y-9z^2+25
d) (x+2y)^3-x^2+4y^2
giúp mik nhé mik cần gấp ạ
2:
a: \(=\left(2x^2-xy\right)+\left(2xz-yz\right)\)
\(=x\left(2x-y\right)+z\left(x-2y\right)=\left(x-2y\right)\left(x+z\right)\)
b: \(=\left(x^2-4y^2\right)-\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+2y-1\right)\)
c: \(=\left(y^2+10y+25\right)-9z^2\)
\(=\left(y+5\right)^2-\left(3z\right)^2\)
\(=\left(y+5+3z\right)\left(y+5-3z\right)\)
d: \(=\left(x+2y\right)^3-\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x+2y\right)\left[\left(x+2y\right)^2-\left(x-2y\right)\right]\)
\(=\left(x+2y\right)\left(x^2+4xy+4y^2-x+2y\right)\)
1:
a: \(x\left(3-4x\right)+5\left(3-4x\right)=\left(3-4x\right)\left(x+5\right)\)
b: \(2y\left(5y-6\right)-4\left(6-5y\right)\)
\(=2y\left(5y-6\right)+4\left(5y-6\right)\)
\(=2\left(5y-6\right)\left(y+2\right)\)
c: \(=27\left(x-2\right)^3-3x\left(x-2\right)^2\)
\(=3\left(x-2\right)^2\cdot\left[9\left(x-2\right)-x\right]\)
\(=3\left(x-2\right)^2\left(8x-18\right)=6\left(x-2\right)^2\cdot\left(4x-9\right)\)
d: \(=6y\left(x-y\right)\left(x+y\right)-8y\left(x+y\right)^2\)
\(=2y\left(x+y\right)\left[3\left(x-y\right)-4\left(x+y\right)\right]\)
\(=2y\left(x+y\right)\left(3x-3y-4x-4y\right)\)
\(=2y\left(x+y\right)\left(-x-7y\right)\)
Bài 1
a) x(3 - 4x) + 5(3 - 4x)
= (3 - 4x)(x + 5)
b) 2y(5y - 6) - 4(6- 5y)
= 2y(5y - 6) + 4(5y - 6)
= (5y - 6)(2y + 4)
= 2(5y - 6)(y + 2)
c) 27(x - 2)³ - 3x(2 - x)²
= 27(x - 2)³ - 3x(x - 2)²
= 3(x - 2)²[9(x - 2) - x]
= 3(x - 2)²(9x - 18 - x)
= 3(x - 2)²(8x - 18)
= 6(x - 2)²(4x - 9)
d) 6y(x² - y²) - 8y(x + y)²
= 6y(x - y)(x + y) - 8y(x + y)²
= 2y(x + y)[3(x - y) - 4(x + y)]
= 2y(x + y)(3x - 3y - 4x - 4y)
= 2y(x + y)(-x - 7y)
= -2y(x + y)(x + 7y)
Cho đa thức M = 3x^6y+ 1/2x^4y^3 - 4y^7 - 4x^4y3 + 11 - 5x^6y+ 2y^7 -2
a) Thu gọn và tìm bậc của đa thức.
b) Tính giá trị của đa thức tại x=1 và y= -1
\(M=3x^6y+\frac{1}{2}x^4y^3-4y^7-4x^4y^3+11-5x^6y+2y^7-2\)
\(M=\left(3x^6y-5x^6y\right)+\left(\frac{1}{2}x^4y^3-4x^4y^3\right)+\left(-4y^7+2y^7\right)+\left(11-2\right)\)
\(M=-2x^6y-\frac{7}{2}x^4y^3-2y^7+9\)
Xét bậc của từng hạng tử
-2x6y có bậc là 7
-7/2x4y3 có bậc là 7
-2y7 có bậc là 7
=> Bậc của M = 7
Thay x = 1 , y = -1 vào M ta được :
\(M=-2\cdot1^6\cdot\left(-1\right)-\frac{7}{2}\cdot1^4\cdot\left(-1\right)^3-2\cdot\left(-1\right)^7+9\)
\(M=-2\cdot1\cdot\left(-1\right)-\frac{7}{2}\cdot1\cdot\left(-1\right)-2\cdot\left(-1\right)+9\)
\(M=2+\frac{7}{2}+2+9\)
\(M=\frac{33}{2}\)
Vậy giá trị của M = 33/2 khi x = 1 , y = -1
Ta có M = (3x6y - 5x6y) + (1/2.x4y3 - 4.x4.y3) - (4y7 + 2y7) + (11 - 2)
= -2x6y - 3,5x4y3 - 2y7 + 9
Bậc của đa thức M là 7
b) M(1 ; -1) = -2.16.(-1) - 3,5.14.(-1)3 - 2.(-1)7 + 9
= 2 + 3,5 + 2 + 9 = 16,5
Bài làm
a) Ta có: \(M=3x^6y+\frac{1}{2}x^4y^3-4y^7-4x^4y^3+11-5x^6y+2y^7-2\)
\(M=\left(3x^6y-5x^6y\right)+\left(\frac{1}{2}x^4y^3-4x^4y^3\right)+\left(-4y^7+2y^7\right)+\left(11-2\right)\)
\(M=-2x^6y-\frac{7}{2}x^4y^3-2y^7+9\)
Bậc của đa thức là 7 ( trong đa thức, thấy đơn thức nào có số mũ lớn nhất dưới dạng rút gọn thì đó là bậc của đa thức, thế thôi )
b) Thay x = 1; y = -1 vào M, ta được:
\(M=-2.1^6\left(-1\right)-\frac{7}{2}.1^4.\left(-1\right)^3-2.\left(-1\right)^7+9\)
\(M=2+\frac{7}{2}+2+9\)
\(M=\frac{4}{2}+\frac{7}{2}+\frac{4}{2}+\frac{18}{2}\)
\(M=\frac{33}{2}\)
Vậy \(M=\frac{33}{2}\)tại x = 1; y = -1
Xác định phần hệ số phần biến bậc của các đơn thức sua
a)\(2x^2y^4z\)
b)\(6x^2yz^3\)
c)\(-x^4y^5\)
a)
Hệ số là: \(2\)
Phần biến : \(x^2y^4z\)
Bậc : \(2+4+1=7\)
b)
Hệ sô: \(6\)
Phần biến: \(x^2yz^3\)
Bậc: \(2+1+3=6\)
c)
Hệ số: \(-1\)
Phần biến : \(x^4y^5\)
Bậc: \(4+5=9\)
\(a.2x^2y^4z\) -> Hệ số: 2, Bậc: 7
\(b.6x^2yz^3\) -> Hệ số: 6, Bậc: 6
\(c.-x^4y^5\) -> Hệ số: (-1), Bậc: 9
a) hệ số :2 ; bậc 7
biến : \(x^2y^4z\)
b) hệ số : 6 ;bậc :6
biến : \(x^2yz^3\)
c) hệ số : -1 ; bậc :9
biến : \(x^4y^5\)
x^3-9x^2+30x-20=0.và 4y^3+6y^2+6y=7tìm p=x^2+xy-2y^2+10x+2y-2017
Phân tích các đa thức sau thành nhân tử :
a/ \(10x\left(x-y\right)-6y\left(y-x\right)\)
b/ \(14x^2y-21xy^2+28x^3y^2\)
c/ \(x^2-4+\left(x-2\right)^2\)
d/ \(\left(x+1\right)^2-25\)
e/ \(x^2-4y^2-2x+4y\)
f/ \(x^2-25-2xy+y^2\)
g/ \(x^3-2x^2+x-xy^2\)
h/ \(x^3-4x^2-12x+27\)
i/ \(x^2+5x-6\)
m/ \(6x^2-7x+2\)
n/ \(4x^4+81\)
\(a.10x\left(x-y\right)-6y\left(y-x\right)\\ =10x\left(x-y\right)+6y\left(x-y\right)\\ =\left(10x-6y\right)\left(x-y\right)\\ =2\left(5x-3y\right)\left(x-y\right)\)
\(b.14x^2y-21xy^2+28x^3y^2\\ =7xy\left(x-y+xy\right)\)
\(c.x^2-4+\left(x-2\right)^2\\ =\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\\ =\left(x-2\right)\left(x+2+x-2\right)\\ =2x\left(x-2\right)\)
\(d.\left(x+1\right)^2-25\\ =\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)