tìm Min
x2 + 2y2 + 3z2 - 2xy + 2xz - 2x -2y -8z +2002
x2 + 15y2 + xy + 8x + y +1992
1. x 2 + 2xy – 8y2 + 2xz + 14yz – 3z2
2. 3x2 – 22xy – 4x + 8y + 7y2 + 1
3. 12x2 + 5x – 12y2 + 12y – 10xy – 3
4. 2x2 – 7xy + 3y2 + 5xz – 5yz + 2z2
5. x 2 + 3xy + 2y2 + 3xz + 5yz + 2z2
6. x 2 – 8xy + 15y2 + 2x – 4y – 3
7. x 4 – 13x2 + 36 8. x 4 + 3x2 – 2x + 3
9. x 4 + 2x3 + 3x2 + 2x + 1
Tìm Min A=\(x^2+2y^2+3z^2-2xy+2xz-2x-2y-8z+2008\)
A=\(x^2+2y^2+3z^2-2xy+2xz-2x-2y-8z+2008\)
A=\(\left(x^2+y^2+z^2+1-2xy+2xz-2x+2y-2z\right)+\left(y^2-4y+4\right)+2\left(z^2-2.\frac{3}{2}z+\frac{9}{4}\right)+1998,5\)A=\(\left(x-y+z-1\right)^2+\left(y-2\right)^2+2\left(z-\frac{3}{2}\right)^2+1998,5\)
vậy A min = 1998,5↔\(\begin{cases}x-y+z-1=0\\y-2=0\\z-\frac{3}{2}=0\end{cases}\)↔\(\begin{cases}x=z=1,5\\y=2\end{cases}\)
(thế wai nào thử lại vẫn sai z,thánh nào cao tay jup vs)
tìm GTNN của các bt
a, A=2x2+y2-2xy-2x+3
b,B=x2-2xy+2y2+2x-10y+17
c,C=x2-xy+y2-2y-2x
d,D=x2+xy+y2-3y-3x
e,E=2x2+2xy +5y2-8x-22y
A= 2x^2 + y^2 - 2xy -2x+3
A= x^2-2xy + y^2 + x^2 - 2x+ 1 +2
A= (x-y)^2 + (x-1)^2 + 2
(x-y)^2> hoặc = 0 với mọi giá trị của x
(x-1)^2 > hoặc =0 với mọi giá trị của x
=> (x-y)^2 + (x-1)^2 > hoặc =0 với mọi giá trị của x
=> (x-y)^2 + (x-1)^2 + 2 > hoặc =2
=> A lớn hơn hoặc bằng 2
=> GTNN của A=2 tại x=y=1
Tìm Min:
1, U = x2 + 2y2 + 3z2 - 2xy + 2xz - 2x - 2y - 8z + 2006
2, P = x -2\(\sqrt{xy}\) + 3y - 2\(\sqrt{x}\) + 2004,5 (x, y không âm)
Tìm giá trị nhỏ nhất của biểu thức:
Q=x2+2y2+2z2+2xy-2yz-2xz-2y+4z+5
\(Q=x^2+2y^2+2z^2+2xy-2yz-2xz-2y+4z+5=\left[\left(x^2+2xy+y^2\right)-2z\left(x+y\right)+z^2\right]+\left(y^2-2y+1\right)+\left(z^2+4z+4\right)=\left(x+y-z\right)^2+\left(y-1\right)^2+\left(z+2\right)^2\ge0\)
\(minQ=0\Leftrightarrow\)\(\left\{{}\begin{matrix}x=-3\\y=1\\z=-2\end{matrix}\right.\)
`Q=x^2+2y^2+2z^2+2xy-2yz-2xz-2y+4z+5`
`Q=(x^2+y^2-z^2+2xy-2yz-2xz)+(y^2-2y+1)+(z^2+4z+4)`
`Q=(x+y-z)^2+(y-1)^2+(z+2)^2`
Ta thấy :
`(x+y-z)^2>=0`
`(y-1)^2>=0`
`(z+2)^2>=0`
`=>(x+y-z)^2+(y-1)^2+(z+2)^2>=0`
Dấu = xảy ra
`<=>` $\begin{cases}x+y-z=0\\y-1=0\\z+2=0\end{cases}$
`<=>` $\begin{cases}x=-3\\y=1\\z=-2\end{cases}$
Tìm min:
A=x2+2y2+3z2-2xy+2xz-2x-2y-8z+2010
Giúp mk với, mk cần gấp
\(A=x^2+2y^2+3z^2-2xy+2xz-2x-2y-8z+2010\)
\(=x^2-2x\left(y-z+1\right)+\left(y-z+1\right)^2+y^2+2z^2-4y+2yz-6z+2009\)
\(=\left[x-\left(y-z+1\right)\right]^2+y^2-2y\left(2-z\right)+\left(2-z\right)^2-\left(2-z\right)^2+2z^2-6z+2009\)
\(=\left(x-y+z-1\right)^2+\left(y-2+z\right)^2+z^2-2z+2005\)
\(=\left(x-y+z-1\right)^2+\left(y-2+z\right)^2+\left(z-1\right)^2+2004\ge2004\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y+z-1=0\\y-2+z=0\\z-1=0\end{matrix}\right.\) \(\Leftrightarrow x=y=z=1\)
Vậy \(B_{min}=2004\Leftrightarrow x=y=z=1\)
Tính giá trị nhỏ nhất của biểu thức
P=X^2 + Y^2 + XY + X + Y
Q=X^2 + XY + Y^2 - 3X - 3Y + 2017
F=X^2 + 2Y^2 + 3Z^2 - 2XY + 2XZ - 2X - 2Y - 8Z + 1998
M=(X+1)^2 + (X-3)^2 + (Y-2)^2 + 4
Tìm tất cả các bội số nguyên (x;y) thỏa mãn phương trình:
a) x2 - 2x + 2y2 = 2(xy +1)
b) x2 + 2y2 + 2xy - 2x = 7
a.
\(\Leftrightarrow2x^2-4x+4y^2=4xy+4\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-4x+4\right)=8\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(x-2\right)^2=8\) (1)
Do \(\left(x-2y\right)^2\ge0;\forall x;y\)
\(\Rightarrow\left(x-2\right)^2\le8\)
\(\Rightarrow\left(x-2\right)^2=\left\{0;1;4\right\}\)
TH1: \(\left(x-2\right)^2\Rightarrow x=2\) thế vào (1)
\(\Rightarrow\left(2-2y\right)^2=8\Rightarrow\left(1-y\right)^2=2\) (ko tồn tại y nguyên t/m do 2 ko phải SCP)
TH2: \(\left(x-2\right)^2=1\Rightarrow\left(x-2y\right)^2=8-1=7\), mà 7 ko phải SCP nên pt ko có nghiệm nguyên
TH3: \(\left(x-2\right)^2=4\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\) thế vào (1):
- Với \(x=0\Rightarrow\left(-2y\right)^2+4=8\Rightarrow y^2=1\Rightarrow y=\pm1\)
- Với \(x=2\Rightarrow\left(2-2y\right)^2+4=8\Rightarrow\left(1-y\right)^2=1\Rightarrow\left[{}\begin{matrix}y=0\\y=2\end{matrix}\right.\)
Vậy pt có các cặp nghiệm là:
\(\left(x;y\right)=\left(0;1\right);\left(0;-1\right);\left(2;0\right);\left(2;2\right)\)
b.
\(\Leftrightarrow2x^2+4y^2+4xy-4x=14\)
\(\Leftrightarrow\left(x^2+4xy+4y^2\right)+\left(x^2-4x+4\right)=18\)
\(\Leftrightarrow\left(x+2y\right)^2+\left(x-2\right)^2=18\) (1)
Lý luận tương tự câu a ta được
\(\left(x-2\right)^2\le18\Rightarrow\left(x-2\right)^2=\left\{0;1;4;9;16\right\}\)
Với \(\left(x-2\right)^2=\left\{0;1;4;16\right\}\) thì \(18-\left(x-2\right)^2\) ko phải SCP nên ko có giá trị nguyên x;y thỏa mãn
Với \(\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\) thế vào (1)
- Với \(x=5\Rightarrow\left(5+2y\right)^2+9=18\Rightarrow\left(5+2y\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}5+2y=3\\5+2y=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-1\\y=-4\end{matrix}\right.\)
- Với \(x=-1\Rightarrow\left(-1+2y\right)^2=9\Rightarrow\left[{}\begin{matrix}-1+2y=3\\-1+2y=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=2\\y=-1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(5;-1\right);\left(5;-4\right);\left(-1;3\right);\left(-1;-3\right)\)
tìm gtnn
d. D(x) = 2x² + 3y² + 4xy-8x-2y + 18 e. E(x) = 2x² + 3y² + 4z²-2(x+y+z) + 2 f F(x)=2x² +8xy + 11y2-4x-2y+6 g. G(x)=2x²+2y+z²+2xy-2xz-2yz-2x-4y h. H(x)=x² + y²-xy-x+y+1 Bài 2: Tim GTLN của các biểu thức sau a. A=4x²-5y² +8xy+10y+12
b.B=-x²-y²+xy+2x+2y