phan tích đa thức thành nhân tử :
x^2 - 5x - 14
Phân tích đa thức thành nhân tử : 5x^2 - 4(x^2 - 2x + 1) - 5
\(5x^2-4\left(x^2-2x+1\right)-5=\left(5x^2-5\right)-4\left(x-1\right)^2=5\left(x^2-1\right)-4\left(x-1\right)^2=5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)^2=\left(x-1\right)\left[5\left(x+1\right)-4\left(x-1\right)\right]=\left(x-1\right)\left(5x+5-4x+4\right)=\left(x-1\right)\left(x+9\right)\)
\(= \)\(5x^2-4x^2+8x-4-5\)
\(=\)\(x^2+8x-9\)
\(=x^2+9x-x-9\)
\(=(x-1)(x+9)\)
\(5x^2-4\left(x^2-2x+1\right)-5\)
\(=5x^2-4x^2+8x-4-5\)
\(=x^2+8x-9\)
\(=\left(x+9\right)\left(x-1\right)\)
Tách hạng tử để phân tích đa thức thành nhân tử:
a) x²+x-2
b) 2x²+5x+3
c) 3x²+5x-2
a) x2+x-2
= x2-x+2x-2
= x(x-1)+2(x-1)
= (x+2)(x-1)
b) 2x2+5x+3
= 2x2+2x+3x+3
= 2x(x+1)+3(x+1)
= (2x+3)(x+1)
c) 3x2+5x-2
= 3x2+6x-1x-2
= 3x(x+2)-1(x+2)
= (3x-1)(x+2)
Phân tích đa thức thành nhân tử
5x\(^2\)−45
Phân tích đa thức thành nhân tử : (x2 – 5x)2 – 3x2 + 15x – 18
\(\left(x^2-5x\right)^2-3x^2+15x-18\)
\(=\left(x^2-5x\right)^2-3\left(x^2-5x\right)-18\)
\(=\left(x^2-5x-6\right)\left(x^2-5x+3\right)\)
\(=\left(x^2-5x+3\right)\left(x-6\right)\left(x+1\right)\)
\(=\left(x^2-5x\right)^2-3\left(x^2-5x\right)-18\\ =\left(x^2-5x\right)^2-6\left(x^2-5x\right)+3\left(x^2-5x\right)-18\\ =\left(x^2-5x\right)\left(x^2-5x-6\right)+3\left(x^2-5x-6\right)\\ =\left(x^2-5x+3\right)\left(x^2-5x-6\right)\\ =\left(x-6\right)\left(x+1\right)\left(x^2-5x+3\right)\)
\(=x^4-10x^3+25x^2-3x^2+15x-18=x^4-10x^3+22x^2+15x-18=x^4+x^3-11x^3-11x^2+33x^2+33x-18x-18=x^3\left(x+1\right)-11x^2\left(x+1\right)+33x\left(x+1\right)-18\left(x+1\right)=\left(x+1\right)\left(x^3-11x^2+33x-18\right)=\left(x+1\right)\left(x^3-6x^2-5x^2+30x+3x-18\right)=\left(x+1\right)\left[x^2\left(x-6\right)-5x\left(x-6\right)+3\left(x-6\right)\right]=\left(x+1\right)\left(x-6\right)\left(x^2-5x\right)=\left(x+1\right)\left(x-6\right)x\left(x-5\right)\)
phân tích đa thức thành nhân tử
(x^2+4x-3)^2-5x.(x^2+4x-3)+6x^2
\(=\left(x^2+4x-3\right)^2-5\left(x^2+4x-3\right)+6x^2\)
\(=x^4+16x^2+9+8x^3-24x-6x^2-5x^2-20x+15+6x^2\)
\(=x^4+8x^3+11x^2-44x+24\)
\(=\left(x^4-x^3\right)+\left(9x^3-9x^2\right)+\left(20x^2-20x\right)-\left(24x-24\right)\)
\(=x^3\left(x-1\right)+9x^2\left(x-1\right)+20x\left(x-1\right)-24\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+9x^2+20x-24\right)\)
Phân tích đa thức thành nhân tử : –x2 – 5x + 24
-x2 - 5x + 24
= -x2 + 3x - 8x + 24
= -x(x + 3) - 8(x - 3)
= (-x - 8)(x + 3)
=(3x-x2)+(24-8x)=3x(1-x)+8(1-x)=(1-x)(3x+8)
\(-x^2-5x+24\)
\(=-x^2-8x+3x+24\)
\(=\left(x+8\right)\left(-x+3\right)\)
Phân tích đa thức thành nhân tử
x(x+3) - 5x( x - 5 ) -( x + 3 )
Phân tích đa thức thành nhân tử : (x2 + 5x – 3)(x2 + 5x – 5) – 15
\(\left(x^2+5x-3\right)\left(x^2+5x-5\right)-15=\left(x^2+5x-3\right)\left(x^2+5x-3-2\right)-15=\left(x^2+5x-3\right)^2-2\left(x^2+5x-3\right)+1-16=\left(x^2+5x-3-1\right)^2-4^2=\left(x^2+5x-4\right)^2-4^2=\left(x^2+5x-8\right)\left(x^2+5x\right)=x\left(x+5\right)\left(x^2+5x-8\right)\)
\(\left(x^2+5x-3\right)\left(x^2+5x-5\right)-15\)
\(=\left(x^2+5x\right)^2-8\left(x^2+5x\right)-15\)
\(=x\left(x+5\right)\left(x^2+5x-8\right)\)
phân tích đa thức thành nhân tử
5x2-x+y-5y2
\(5x^2-x+y-5y^2\)
\(=\left(5x^2-5y^2\right)-\left(x-y\right)\)
\(=5\left(x^2-y^2\right)-\left(x-y\right)\)
\(=5\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)
\(=\left(x-y\right)\left[5\left(x+y\right)-1\right]\)
\(=\left(x-y\right)\left(5x+5y-1\right)\)