Giải các bpt sau
\(x^2+3x\ge2+\sqrt{5x^2+15x+14}\)
giải bpt sau : \(\sqrt{x^2-3x+20}+\sqrt{x^2-4x+3}\ge\sqrt{x^2-5x+4}\)
Giải các phương trình sau;
a) \(\sqrt{3}.x-2=x \)
b)\(\sqrt{3x-2}=2- \sqrt{3} \)
c)4\(\sqrt{x+1}=x^{2}-5x+14 \)
\(a,PT\Leftrightarrow x\sqrt{3}=x+2\\ \Leftrightarrow3x^2=x^2+4x+4\\ \Leftrightarrow2x^2-4x-4=0\Leftrightarrow x^2-2x-2=0\\ \Delta=4+8=12\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2-2\sqrt{3}}{2}=1-\sqrt{3}\\x=\dfrac{2+2\sqrt{3}}{2}=1+\sqrt{3}\end{matrix}\right.\)
\(b,ĐK:x\ge\dfrac{2}{3}\\ PT\Leftrightarrow3x-2=7-4\sqrt{3}\\ \Leftrightarrow3x=9-4\sqrt{3}\\ \Leftrightarrow x=\dfrac{9-4\sqrt{3}}{3}\left(tm\right)\)
\(c,ĐK:x\ge-1\\ PT\Leftrightarrow\left(x+1-4\sqrt{x+1}+4\right)+\left(x^2-6x+9\right)=0\\ \Leftrightarrow\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x+1}=2\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=4\\x=3\end{matrix}\right.\Leftrightarrow x=3\left(tm\right)\)
giải bpt: \(\sqrt{x^2-x+1}+\sqrt{x^2+x+1}\ge2\)
Xét hàm \(y=\sqrt{x^2-x+1}+\sqrt{x^2+x+1}\) . Ta có:
\(y'=\frac{2x-1}{2\sqrt{x^2-x+1}}+\frac{2x+1}{2\sqrt{x^2+x+1}}=0\Leftrightarrow x=0\) ( bạn có thể giải PT này bằng cách quy đồng kết hợp với liên hợp)
Ta thấy rằng \(x\mapsto \infty \Rightarrow y\mapsto +\infty \) nên hàm không tồn tại max. Do đó hàm $y$ đạt min tại $x=0$, tức là \(y_{min}=2\)
Suy ra BPT trên luôn đúng với mọi $x$ thuộc tập xác định, tức là với mọi $x\in\mathbb{R}$
giải các bpt sau:
a)\(\left(x+2\right)\sqrt{x+3}.\sqrt{x+4}\le0\)
b)\(x+1\ge2\sqrt{x^2-1}\)
c) \(\sqrt{3x^2+1}< \sqrt{3}.\left(x-2\right)\)
mọi người giúp em với ạ
Giải bất phương trình sau:
\(\sqrt{1+x}-\sqrt{1-x}\ge x\)
\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}\ge2\sqrt{x^2-5x+4}\)
a/ \(-1\le x\le1\)
\(\Leftrightarrow\frac{2x}{\sqrt{1+x}+\sqrt{1-x}}-x\ge0\)
\(\Leftrightarrow x\left(\frac{2}{\sqrt{1+x}+\sqrt{1-x}}-1\right)\ge0\)
Do \(0< \sqrt{1+x}+\sqrt{1-x}\le\sqrt{2\left(1+x+1-x\right)}=2\)
\(\Rightarrow\frac{2}{\sqrt{1+x}+\sqrt{1-x}}\ge1\Rightarrow\frac{2}{\sqrt{1+x}+\sqrt{1-x}}-1\ge0\)
\(\Rightarrow x\ge0\)
Vậy nghiệm của BPT là \(0\le x\le1\)
b/ \(\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{\left(x-1\right)\left(x-3\right)}\ge2\sqrt{\left(x-1\right)\left(x-4\right)}\)
- Với \(x=1\) thỏa mãn
- Với \(x\ge4\Leftrightarrow\sqrt{x-2}+\sqrt{x-3}\ge2\sqrt{x-4}\)
\(\Leftrightarrow\sqrt{x-2}-\sqrt{x-4}+\sqrt{x-3}-\sqrt{x-4}\ge0\)
\(\Leftrightarrow\frac{2}{\sqrt{x-2}+\sqrt{x-4}}+\frac{1}{\sqrt{x-3}+\sqrt{x-4}}\ge0\) (luôn đúng)
- Với \(x< 1\Rightarrow\sqrt{2-x}+\sqrt{3-x}\ge2\sqrt{4-x}\)
Tương tự bên trên ta có BPT luôn sai
Vậy nghiệm của BPT đã cho là \(\left[{}\begin{matrix}x=1\\x\ge4\end{matrix}\right.\)
giải bpt:
1. \(\frac{\sqrt{-3x^2+x+4}+2}{x}< 2\)
2. \(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}\ge2\sqrt{x^2-5x+4}\)
3. \(\sqrt{x^2-8x+15}+\sqrt{x^2+2x-15}\le\sqrt{4x^2-18x=18}\)
4. 4(x+1)2 \(\ge\) (2x +10)( 1- \(\sqrt{3+2x}\))2
5. \(\sqrt{1+x}-\sqrt{1-x}\ge x\)
Giải bất phương trình: \(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}\ge2\sqrt{x^2-5x+4}\)
giải các BPT sau
a) \(\left|\dfrac{x^2-5x+4}{x^2-4}\right|\le1\)
b) \(\left|x^2-3x+2\right|+x^2>2x\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
giải bpt :
a,\(\frac{\sqrt{51-2x-x^2}}{1-x}< 1\)
b, \(\sqrt{x^2-5x-14}\ge2x-1\)
b, \(\sqrt{x^{2^{ }}-5x-14}\ge2x-1\)
*TH1:
+, \(x^{2^{ }}-5x-14\ge0\)
+, \(2x-1< 0\)
*TH2:
+, \(2x-1\ge0\)
+, \(x^2-5x-14\ge\left(2x-1\right)^2\)
Câu b bạn giải theo 2 trường hợp này là được nhé