A=1/1.2+1/2.3+1/2.3+...+1/99.100
10.4. Tính tổng
a) \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
b) \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\)
c) \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) +...........\(\dfrac{1}{99.100}\)
d) \(\dfrac{3}{1.2}\) + \(\dfrac{3}{2.3}\) +.........\(\dfrac{1}{99.100}\)
giúp em
a)
`1/1-1/2`
`=2/2-1/2`
`=1/2`
b)
`1/(1*2)+1/(2*3)`
`=1/1-1/2+1/2-1/3`
`=1/1-1/3`
`=3/3-1/3`
`=2/3`
c)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{1}-\dfrac{1}{100}\\ =\dfrac{99}{100}\)
d)
\(\dfrac{3}{1\cdot2}+\dfrac{3}{2\cdot3}+...+\dfrac{3}{99\cdot100}\) đề phải như thế này chứ nhỉ?
\(=\dfrac{1\cdot3}{1\cdot2}+\dfrac{1\cdot3}{2\cdot3}+...+\dfrac{1\cdot3}{99\cdot100}\\ =3\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\\ =3\cdot\dfrac{99}{100}\\ =\dfrac{297}{100}\)
Tính tổng: M=1.2+2.3+....+48.49 N=1+2+...+48 A=1.2+2.3+...+99.100 Cảm ơn
b: Tổng của N là:
\(\dfrac{49\cdot48}{2}=49\cdot24=1176\)
a) \(3M=1.2.3+2.3.3+...+48.49.3=1.2.3+2.3.\left(4-1\right)+...+48.49.\left(50-47\right)=1.2.3+2.3.4-1.2.3+...+48.49.50-47.48.49=48.49.50\Rightarrow M=\dfrac{48.49.50}{3}\Rightarrow M=39200\)
b) Tương tự câu a
a=1/1.2+1/2.3+...+1/99.100
a=1-1/2+1/2-1/3+ ....+1/99-1/100=1-1/100=99/100
A=1-1/2+1/2-1/3+.....+1/99-1/100
= 1-1/100
= 99/100
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
A= 1/1.2+1/2.3+1/3.4+...+1/99.100 = ?
A=1/1-1/2+1/2-1/3+1/3-1/4+...............+1/99-1/100
A=1/1-1/100
A=100/100-1/100
A=99/100
Mk ko chép đề bài
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}.+.....+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A==\frac{99}{100}\)
kết quả = 99/100 tick mik đúng nhé
tinh
A=1/1.2+1/2.3+......+1/99.100
Tính A = \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)+\left(-2-4-6-...-100\right)+\)\(\left(-1.2-2.3-3.4-...-99.100\right)\)
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}\)
=1/1-1/2+1/2-1/3+1/3-1/4+....+1/99-1/100
=1-1/100
=99/100
=1−1/2+1/2−1/3+1/3−1/4+...+1/99−1/100
=1 − 1/100 = 99/100
1/1.2+1/2.3+1/3.4+...+1/99.100
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100
Tính :
1/1.2 + 1/2.3 + 1/3.4 + . . . + 1/99.100
Answer:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{100}{100}-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)