đề
viết các biểu thức sau dưới dạng tổng
a, (x+y+z)^2
b,(x-y+z)^2
c,(x-y-z)
làm như thế nào vậy ạ
1.Vt biểu thức dưới dạng tổng
a, (x+y+z)^2
b, (x-y+z)^2
c, (x-y-z)^2
2. Vt biểu thức dưới dạng tích
a, (a^2-2a+3)(a^2+a-3)
b,(a^2+2a+3)(a^2-2a+3)
c, (a^2+2a+3)(a^2+2a-3)
d, (a^2+2a+3)(a^2-2a-3)
e,(-a^2-2a+3)(-a^2-2a+3)
f,(a^2+2a)(2a-a^2)
Các bạn giúp mình vs mình cảm ơn
1:
a: \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2zx+2yz\)
b: \(\left(x-y+z\right)^2=x^2+y^2+z^2-2xy+2xz-2yz\)
c: \(\left(x-y-z\right)^2=x^2+y^2+z^2-2xy-2xz+2yz\)
(x+y+z)(x-y+z)(x+y-z)(y+z-x) viết biểu thức sau dưới dạng tổng
(x+y+z)(x+z-y)(x+y-z)(y+z-x)
=[(x+y)^2-z^2]*[(x+z-y)(y+z-x)]
=[(x+y)^2-z^2][y^2-(x+z)^2]
=(x^2+2xy+y^2-z^2][y^2-x^2-2xz-z^2]
=x^2y^2-x^4-2x^3z-x^2z^2+2xy^3-2x^3y-4x^2yz-2xyz^2+y^4-y^2x^2-2xy^2z-z^2y^2-y^2z^2+x^2z^2+2xz^3+z^4
Viết đa thức sau dưới dạng tổng:
(x+y+z+t).(x+y-z-t)
(làm giải thích luôn ạ, cảm ơn)
`(x+y+z+t)(x+y-z-t)`
`=[(x+y)+(z+t)][(x+y)-(z+t)]`
`=(x+y)^2-(z-t)^2`
`=(x+y)^2+[-(z-t)^2]`
\(\left(x+y+z+t\right)\left(x+y+z-t\right)=\left(x+y+z\right)^2-t^2\)
x^2+6x-7=0 Tìm x
(x+y+z)(x-y+z)(x+y-z)(y+z-x) viết biểu thức sau dưới dạng tổng
\(x^2+6x-7=0\\ \Leftrightarrow x^2-x+7x-7=0\\ \Leftrightarrow x\left(x-1\right)+7\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
Vậy \(S=\left\{1;-7\right\}\)
\(x^2+6x-7=0\\ \Leftrightarrow x^2+7x-x-7=0\\ \Leftrightarrow\left(x^2+7x\right)-\left(x+7\right)=0\\ \Leftrightarrow x\left(x+7\right)-\left(x+7\right)=0\\ \Leftrightarrow\left(x+7\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-7\\x=1\end{matrix}\right.\)
\(x^2+6x-7=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
Vậy \(S=\left\{1;-7\right\}\)
help me please mik gắp lắm
viết biểu thức sau dưới dạng tổng của các bình phương
2(x-y)(z-y)+2(y-x)(z-x)+2(y-z)(x-z)
Ta có:\(2\left(x-y\right)\left(z-y\right)+2\left(y-z\right)\left(z-x\right)+2\left(y-z\right)\left(x-z\right)\)
\(=2\left[\left(x-y\right)\left(z-y\right)+\left(y-x\right)\left(z-x\right)+\left(y-z\right)\left(x-z\right)\right]\)
\(=2\left[xz-xy-yz+y^2+yz-xy-zx+x^2+yx-yz-zx+z^2\right]\)
\(=2\left[-xz-xy-yz+x^2+y^2+z^2\right]\)
\(=x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\)
\(=\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)
1/ Viết các biểu thức sau dưới dạng tổng:
a. (x+y+z).(x-y-z)
b. (x-y+z).(x+y+z)
c. -16+(x-3)\(^2\)
a) Ta có:
(x+y+z)(x-y-z) = x^2 -xy -xz +yx- y^2 -yz+zx -zy -z^2
=x^2 - y^2 - 2yz - z^2.
b) Ta có: (x-y+z)(x+y+z) = x^2 +xy+xz -yx-y^2 -yz +zx+zy +z^2
=x^2 +2xz- y^2 +z^2.
c) Ta có: -16 + (x-3)^2 = -16 + ( x^2-6x+9)
= -16 + x^2 - 6x + 9
= x^2 - 6x - 7.
\(a,\left(x+y+z\right)\left(x-y-z\right)\)
\(=x\left(x-y-z\right)+y\left(x-y-z\right)+z\left(x-y-z\right)\)
\(=x^2-xy-xz+xy-y^2-yz+xz-yz-z^2\)
\(=x^2-y^2-2yz-z^2\)
\(b,\left(x-y+z\right)\left(x+y+z\right)\)
\(=x\left(x+y+z\right)-y\left(x+y+z\right)+z\left(x+y+z\right)\)
\(=x^2+xy+xz-xy-y^2-yz+xz+yz+z^2\)
\(=x^2+2xz-y^2+z^2\)
\(c,-16+\left(x-3\right)^2\)
\(=-16+x^2-6x+9\)
\(=x^2-6x-7\)
1)viết các biểu thức dưới dạng tổng
a,(x+y+z)(x-y-z)
b,(x-y+z)(x+y+z)
a, (x + y + z)(x - y - z)
= x^2 - xy - xz + xy - y^2 - zy + zx - zy - z^2
= x^2 + y^2 + z^2 + (xy - xy) + (xz - xz) - (zy + zy)
= x^2 + y^2 + z^2 - 2zy
b, (x - y + z)(x + y + z)
= x^2 + xy + xz - xy - y^2 - zy + zx + zy + z^2
= x^2 + y^2 + z^2 + (xy - xy) + xz + xz + (zy - zy)
= x^2 + y^2 + z^2 + 2zx
Viết các biểu thức sau dưới dạng tổng:
(x+y+z+t).(x+y-z-t)
(x-y+z-t).(x-y-z+t)
(x+2y+3z+t)^3
(x^2+2x-1)^2
Cho ba số x, y, z thỏa mãn x+ y+z=1.Tìm giá trị nhỏ nhất của biểu thức A= x^2+ y^2+z^2
Những bài như thế này có phương hướng làm ntn ạ. Dayj em với.
\(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{1^2}{3}=\dfrac{1}{3}\)
-Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
-Những bài c/m BĐT có phương hướng sử dụng các BĐT đơn giản hơn để c/m:
-Thí dụ: BĐT Caushy:
*Hai số: \(a+b\ge\sqrt{ab}\left(a,b>0\right)\). \("="\Leftrightarrow a=b\).
\(a^2+b^2\ge2ab\) . \("="\Leftrightarrow a=b\)
-Và còn nhiều BĐT khác nữa.....