Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tom
Xem chi tiết
Nguyễn Tom
Xem chi tiết
Nguyễn Linh Chi
21 tháng 9 2020 lúc 11:41

Ta có: \(X=\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)

<=> \(X^2=6-3\sqrt{2+\sqrt{3}}+2+\sqrt{2+\sqrt{3}}-2\sqrt{3}.\sqrt{4-\left(2+\sqrt{3}\right)}\)

<= \(X^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3}.\sqrt{2-\sqrt{3}}\)

<=> \(X^2=8-\sqrt{2}\left(\sqrt{3}+1\right)-\sqrt{6}\left(\sqrt{3}-1\right)\)

<=> \(X^2=8-4\sqrt{2}\)

<=> \(X^2-8=-4\sqrt{2}\)

=> \(X^4-16X+64=32\)

<=> \(X^4-16X^2+32=0\)

Vậy X là nghiệm phương trình \(X^4-16X^2+32=0\)

Khách vãng lai đã xóa
nguyễn xuân tùng
Xem chi tiết
Nguyễn Trần Thành Đạt
10 tháng 3 2021 lúc 4:26

Em viết lại đề rõ ràng nha!

Nure Boki
Xem chi tiết
BƠKYBO
Xem chi tiết

Em phải viết bằng công thức toán học biểu tượng \(\Sigma\) góc trái màn hình

Hoặc em viết bằng tay chụp ảnh up lên em nhé

Chứ thế này cô ngồi nãy giờ vẫn không biết chính xác biểu thức em cần rút gọn là như thế nào

Thân mến!

camcon
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 8 2021 lúc 21:11

\(2\sqrt{6}+\sqrt{3}+4\sqrt{2}+3\)

\(=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)+\left(3\sqrt{2}+3+\sqrt{6}\right)\)

\(=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)+\left(\sqrt{18}+\sqrt{9}+\sqrt{6}\right)\)

\(=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)+\left(\sqrt{3.6}+\sqrt{3.3}+\sqrt{3.2}\right)\)

\(=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)+\sqrt{3}\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\)

Nguyenn
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 10 2023 lúc 21:42

\(\sqrt{\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}+\sqrt{\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}}\)

\(=\sqrt{\dfrac{\left(\sqrt{3}-\sqrt{2}\right)^2}{3-2}}+\sqrt{\dfrac{\left(\sqrt{3}+\sqrt{2}\right)^2}{3-2}}\)

\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}=2\sqrt{3}\)

Dương An Hạ
Xem chi tiết
Nguyệt
21 tháng 7 2019 lúc 16:49

\(\sqrt{3}-\frac{5}{2}>\sqrt{3}-4\text{ vì }-\frac{5}{2}>-4\)

\(\Rightarrow2.\left(\sqrt{3}-\frac{5}{2}\right)>\sqrt{3}-4\)

\(\Rightarrow2.\sqrt{3}-5>\sqrt{3}-4\)

Nguyệt
21 tháng 7 2019 lúc 16:54

b) vì \(\sqrt{5}-\sqrt{12}< 0\), ta có: 

 \(5\sqrt{5}-2\sqrt{3}=4\sqrt{5}+\sqrt{5}-\sqrt{12}< 4\sqrt{5}< 4\sqrt{5}+6\) 

Vậy \(5\sqrt{5}-2\sqrt{3}< 6+4\sqrt{5}\)

Nguyệt
21 tháng 7 2019 lúc 16:57

c)\(\sqrt{2}-\sqrt{6}=\sqrt{2}.\left(\sqrt{1}-\sqrt{3}\right)>\left(1-\sqrt{3}\right)\)

Vậy \(\sqrt{2}-\sqrt{6}>1-\sqrt{3}\)

Phan thị hạnh
Xem chi tiết