Cho ΔABC vuông tại A , AB =9cm ; AC =12cm.Kẻ đường cao AH
a)Chứng minh :ΔABC~ΔHBA
b)Tính độ dài : BC,AH
c) phân giác của góc ACB cắt AH tại E cắt AB tại D tính tỉ số diện tích của 2 tam giác ACD và HCE
Cho ΔABC, vẽ AH vuông góc với BC tại H. Biết BH = 9cm, CH= 16cm AH=12cm
a) Tính AB,AC b) CM: ΔABC là tam giác vuông
a, Xét Δ AHC vuông tại H, có :
\(AB^2=AH^2+HB^2\)
=> \(AB^2=12^2+9^2\)
=> \(AB^2=225\)
=> AB = 15 (cm)
Xét Δ AHC vuông tại H, có :
\(AC^2=AH^2+HC^2\)
=> \(AC^2=12^2+16^2\)
=> \(AC^2=400\)
=> AC = 20 (cm)
Xét Δ ABC, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go đảo)
=> Δ ABC vuông tại A
vẽ ΔABC vuông tại A, biết AB = 9cm,AC = 12cm.Đường cao AH và đường phân giác AD.
a, tính BC,HB
b, chứng minh ΔABC đông dạng ΔHBA
c.tính BD
a) Xét tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{9^2+12^2}=15\left(cm\right)\)
Áp dụng HTL:
\(AB^2=BH.BC\)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=5,4\left(cm\right)\)
b) Xét tam giác ABC và tam giác HBA có:
\(\widehat{B}\) chung
\(\widehat{BAC}=\widehat{AHB}=90^0\)
\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)
c) Xét tam giác ABC vuông tại A có:
AD là trung tuyến
\(\Rightarrow AD=BD=\dfrac{1}{2}BC=\dfrac{1}{2}.15=7,5\left(cm\right)\)
Cho ΔABC Vuông tại A, đường cao AH.Biết AB = 12 cm , AC = 9cm . Tính AH,BH,CH ( làm tròn kết quả đến số thập phân thứ nhất )
\(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)
Áp dụng HTL tam giác:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{144}{15}=9,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{81}{15}=5,4\left(cm\right)\\AH=\sqrt{9,6\cdot5,4}=7,2\left(cm\right)\end{matrix}\right.\)
Xét ΔACB vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=15(cm)
Xét ΔACB vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=7.2\left(cm\right)\\BH=9.6\left(cm\right)\\CH=5.4\left(cm\right)\end{matrix}\right.\)
Cho ΔABC vuông tại A, có AB = 9cm, BC = 15 cm, AC=12 cm.
a) so sánh các góc của ΔABC
b) trên tia đối của AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD. Chừng minh ΔABC = ΔADC
c) E là trung điểm cạnh CD,BE cắt AC ở I. Chứng minh DI đi qua trung điểm cạnh BC
a: AB<AC<BC
=>góc C<góc B<góc A
b: Xet ΔABC có
BC^2=AB^2+AC^2
=>ΔBCA vuông tại A
Xet ΔCAB vuông tại A và ΔCAD vuông tại A có
CA chung
AB=AD
=>ΔCAB=ΔCAD
c: Xét ΔCBD có
CA,BE là trung tuyến
CA cắt BE tại I
=>I là trọng tâm
=>DI đi qua trung điểm của BC
cho ΔABC biết AB=15cm;BC=25cm.kẻ AH vuông góc với BC, BH=9cm
a) tính độ dài các cạnh AH ,HC, AC
b) chứng minh ΔABC vuông tại
mong anh chị giúp em với hôm nay em phải nộp rồi
Cho ΔABC vuông tại A,có AC=20cm.Đường tròn đường kính AB cắt BC tại M(M không trùng B),tiếp tuyến tại M của đường tròn đường kính AB cắt AC tại I.Độ dài đoạn thẳng AI bằng
A.6cm B.9cm C.10cm D.12cm
Cho ΔABC vuông tại A (AB < AC), BD là phân giác của góc B. Gọi E là hình
chiếu của D trên BC
a) Biết AB = 9cm; AC = 12cm. Tính BC.
b) Chứng minh ΔDAE cân.
c) Chứng minh DA < DC.
d) Vẽ CF vuông góc với BD tại F. Chứng minh các đường thẳng AB, DE, CF đồng quy
a, Xét ΔABC có AB=9cm, AC=12cm, ∠A=90độ
Áp dụng định lý Py-ta-go:
BC²=AB²+AC²
→BC²=9²+12²
→BC²=225
→BC=15CM
b, Xét ΔABD và ΔEBD có:
∠ABD=∠EBD (BD là tia phân giác)
BD-chung
∠BAD=∠BED=90 độ
→ΔABD=ΔEBD (g.c.g)
→AD=ED (cặp góc tương ứng)
→ΔDEA cân
c, Xét ΔDEC có ∠DEC= 90 độ và DC là cạnh huyền
mà trong tam giác vuông cạnh huyền là cạnh lớn nhất
nên DC>DE
mà DE=DA
suy ra DC>DA
d, Gọi K là giao điểm của AB và CF
Xét ΔBCK có: BF và CA là hai đường cao
và BF∩CA≡D
Mà DE⊥BC→DE∈đường cao từ K
→K,D,E thẳng hàng
→ AB,BE,CF đồng quy
cho ΔABC vuông tại A,đường cao AH (HϵBC).Biết BH=4cm ;CH=9cm. Gọi I,k lần lượt là hình chiếu của H lên AB và AC.Chứng minh rằng:
a)tứ giác AIHK là hình chữ nhật.
b)tam giác AKI đồng dạng với tam giác ABC.
c)tính diện tích ΔABC.
Cho ΔABC vuông tại A có AB =9cm, BC =15 cm, vẽ AD ⊥ BC (D ⊥ BC).
a) Tính AC, so sánh BD và DC.
b) Trên đoạn thẳng DC lấy điểm N sao cho DB = DN. Chứng minh ΔABN lầ tam giác cân.
c) Kẻ BE ⊥ AN cắt AD tại H. Chứng minh NH ⊥ AB.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=15^2-9^2=144\)
hay AC=12(cm)
Xét ΔABC có AB<AC(9cm<12cm)
mà hình chiếu của AB trên BC là DB
và hình chiếu của AC trên BC là DC
nên BD<DC
b) Xét ΔADB vuông tại D và ΔADN vuông tại D có
DB=DN(gt)
AD chung
Do đó: ΔADB=ΔADN(hai cạnh góc vuông)
Suy ra: AB=AN(Hai cạnh tương ứng)
Xét ΔABN có AB=AN(cmt)
nên ΔABN cân tại A(Định nghĩa tam giác cân)
c) Xét ΔANB có
BE là đường cao ứng với cạnh AN(gt)
AD là đường cao ứng với cạnh NB(Gt)
BE cắt AD tại H(gt)
Do đó: H là trực tâm của ΔANB(Tính chất ba đường cao của tam giác)
Suy ra: NH\(\perp\)AB(Đpcm)