\(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)
Áp dụng HTL tam giác:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{144}{15}=9,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{81}{15}=5,4\left(cm\right)\\AH=\sqrt{9,6\cdot5,4}=7,2\left(cm\right)\end{matrix}\right.\)
Xét ΔACB vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=15(cm)
Xét ΔACB vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=7.2\left(cm\right)\\BH=9.6\left(cm\right)\\CH=5.4\left(cm\right)\end{matrix}\right.\)