Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Phương Linh
Xem chi tiết
Dũng Lê
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 10 2021 lúc 15:54

\(A=\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}\cdot\dfrac{1}{\sqrt{x}}}=2\\ A_{min}=2\Leftrightarrow x=1\\ B=\dfrac{x-4+9}{\sqrt{x}+2}=\sqrt{x}-2+\dfrac{9}{\sqrt{x}+2}\\ B=\sqrt{x}+2+\dfrac{9}{\sqrt{x}+2}+4\ge2\sqrt{\left(\sqrt{x}+2\right)\cdot\dfrac{9}{\sqrt{x}+2}}+4\\ B\ge2\sqrt{9}+4=10\\ B_{min}=10\Leftrightarrow\sqrt{x}+2=3\left(\sqrt{x}+2\ge2\right)\Leftrightarrow x=1\)

 

Người lạ mặt
Xem chi tiết
Phạm Phương Linh
Xem chi tiết
Phía sau một cô gái
1 tháng 8 2021 lúc 21:15

Áp dụng bất đẳng thức Cô - si ta có:

\(S\) \(=\) \(ab+\dfrac{1}{ab}\ge2\sqrt{ab.\dfrac{1}{ab}}\)

\(S\) \(=\)  \(ab+\dfrac{1}{ab}\ge2\sqrt{1}=2\)

Dấu " = " xảy ra khi \(\left\{{}\begin{matrix}ab=\dfrac{1}{ab}\\a+b=1\end{matrix}\right.\)  ⇔  \(\left\{{}\begin{matrix}\left(ab\right)^2=1\\a+b=1\end{matrix}\right.\)

                                ⇔ \(a=b=0,5\)

GTNN của \(S=ab+\dfrac{1}{ab}=2\) khi \(a=b=0,5\)

 

 

anbe
1 tháng 8 2021 lúc 21:38

S=\(ab+\dfrac{1}{ab}\) 

Ta có :

Áp dụng BĐT Cauchy(cô-sy),ta có

1\(\ge a+b\ge2\sqrt{ab}\)\(\Leftrightarrow\sqrt{ab}\le\dfrac{1}{2}\)\(\Rightarrow ab\le\dfrac{1}{4}\)

Đặt x=ab(x\(\le\dfrac{1}{4}\))

\(\Rightarrow x+\dfrac{1}{x}=x+\dfrac{1}{16x}+\dfrac{15}{16x}\)

Áp dụng BĐT Cauchy (Cô -si):

\(S\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{16x}=\dfrac{1}{2}+\dfrac{15}{16X}\ge\dfrac{1}{2}+\dfrac{16}{16.\dfrac{1}{4}}=\dfrac{17}{4}\)

Vậy Min S=\(\dfrac{17}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\ab=\dfrac{1}{16ab}\\ab=\dfrac{1}{4}\\\end{matrix}\right.\) \(\Leftrightarrow a=b=\dfrac{1}{2}\)

 

 

Bùi Như Ý
Xem chi tiết
Akai Haruma
14 tháng 11 2023 lúc 20:33

Lời giải:

Ta thấy: $(x-1)^2\geq 0$ với mọi $x$

$(y+2)^2\geq 0$ với mọi $y$

$\Rightarrow A=(x-1)^2+4(y+2)^2+2021\geq 0+4.0+2021=2021$
Vậy $A_{\min}=2021$. Giá trị đạt được khi $x-1=y+2=0$

$\Rightarrow x=1; y=-2$

mai
Xem chi tiết
Akai Haruma
8 tháng 5 2023 lúc 23:53

Lời giải:

$N=x^2-2xy+2y^2-x=(2y^2-2xy+\frac{x^2}{2})+(\frac{x^2}{2}-x+\frac{1}{2})-\frac{1}{2}$

$=2(y-\frac{x}{2})^2+\frac{1}{2}(x-1)^2-\frac{1}{2}\geq \frac{-1}{2}$

Vậy GTNN của $N$ là $\frac{-1}{2}$

Giá trị này đạt tại $y-\frac{x}{2}=x-1=0$

$\Leftrightarrow x=1; y=\frac{1}{2}$

Lê Thị Trà My
20 tháng 10 lúc 16:27

Ta có: N = x^2 -2xy +2y^2 -x

         2N = 2x^2 - 4xy + 4y^2 - 2x

              = (x^2- 4xy +4y^2) +(x^2 - 2x +1) -1

              = (x-2y)^2 + ( x-1)^2 -1 

=> 2N lớn hơn hoặc bằng -1

=> N lớn hơn hoặc bằng -1/2

   Dấu "=" xảy ra <=> ( x-2y )^2 = 0 và ( x-1 )^2 = 0

                             => x-2y=0 và x-1=0

                             => x=1 và y=1/2

Vậy tại x=1 và y=1/2 thì biểu thức N đạt GTNN là -1/2

Đức Thành
Xem chi tiết
Lonely Boy
28 tháng 12 2016 lúc 10:32

tìm GTLN thì đưa về dạng A^2 - k hoặc /A/ -k

GTNN đưa về dạng A^2 + k hoặc /A/ +k

Đức Thành
28 tháng 12 2016 lúc 10:36

Choi mình VD đi bạn

Lonely Boy
28 tháng 12 2016 lúc 11:06

tìm GTLN của  x^2 - 5

Tìm GTLN của x^2 +1

đấy là các dạng cơ bản. tuy nhiên khi làm , đề bài có thể lắt léo hơn nhưng về cơ bản cuối cùng phải dưa đc về dạng như tui đã bảo

Trần Tuấn Hoàng
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 4 2022 lúc 22:33

ĐKXĐ: \(\dfrac{3}{2}\le x\le3\)

\(A=\sqrt{2x-3}+\sqrt{6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\)

\(A\ge\sqrt{2x-3+6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\ge\sqrt{3}\)

\(A_{min}=\sqrt{3}\) khi \(3-x=0\Rightarrow x=3\)

\(A=1.\sqrt{2x-3}+\sqrt{2}.\sqrt{6-2x}\le\sqrt{\left(1+2\right)\left(2x-3+6-2x\right)}=3\)

\(A_{max}=3\) khi \(2x-3=\dfrac{6-2x}{2}\Rightarrow x=2\)

Nguyễn SSS
Xem chi tiết
No Văn Name
22 tháng 11 2017 lúc 8:49

x = 2007 and 2008 nha bn