Xác định m để phương trình: (x - 1)m = 4(x+1) có nghiệm dương.
xác định m để phương trình x^3-(2m+1)x^2+(m^2+m+1)x-m^2+m-1=0 có ba nghiệm dương phân biệt
Cho phương trình :
\(x^2-2\left(m-1\right)x+m^2-3m=0\)
a) Xác định m để phương trình có 2 nghiệm phân biệt
b) Xác định m để phương trình có đúng 1 nghiệm âm
c) Xác định m để phương trình có 1 nghiệm bằng 0. Tìm nghiệm còn lại
d) Tìm hệ thức liên hệ giữa 2 nghiệm x1, x2 của phương trình không phụ thuộc và m
e) Xác định m để phương trình có 2 nghiệm thỏa mãn \(x1^2+x2^2=8\)
x2-2(m-1)x+m2-3m=0
△'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1
áp dụng hệ thức Vi-ét ta được
x1+x2=2(m-1) (1)
x1*x2=m2-3m (2)
a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1
b) để PT có duy nhất một nghiệm âm thì x1*x2 <0
e) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)
\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)
\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)
\(\Leftrightarrow2m^2-2m-4=0\)(1)
\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)
Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)
Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)
Xác định m để phương trình 4-m=2/m+1 có nghiệm dương
ĐKXĐ: m<>-1
\(\Leftrightarrow\left(4-m\right)\left(m+1\right)=2\)
\(\Leftrightarrow4m+4-m^2-m-2=0\)
\(\Leftrightarrow-m^2+3m-2=0\)
\(\Leftrightarrow m^2-3m+2=0\)
=>m=1 hoặc m=2
Xác định m để phương trình 4 - m = \(\dfrac{2}{m+1}\) có nghiệm dương.
\(\Leftrightarrow\left(4-m\right)\left(m+1\right)=2\)
\(\Leftrightarrow4m+4-m^2-m-2=0\)
\(\Leftrightarrow-m^2+3m+2=0\)
\(\Leftrightarrow m^2-3m-2=0\)
\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-2\right)=9+8=17\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{3-\sqrt{17}}{2}\\m_2=\dfrac{3+\sqrt{17}}{2}\end{matrix}\right.\)
cho phương trình \(x^2-2\left(m+1\right)x+4m=0\)
a, giải phương trình khi m = 3
b, tìm m để để phương trình có nghiệm kép. Tìm nghiệm kép đó
c, xác định phương trình có 1 nghiệm bằng 4. Tìm nghiệm còn lại
a. Bạn tự giải
b. Pt có nghiệm kép khi:
\(\Delta'=\left(m+1\right)^2-4m=0\Leftrightarrow m^2-2m+1=0\Leftrightarrow m=1\)
Khi đó: \(x_{1,2}=m+1=2\)
c. Do pt có nghiệm bằng 4:
\(\Rightarrow4^2-2\left(m+1\right).4+4m=0\)
\(\Leftrightarrow8-4m=0\Rightarrow m=2\)
\(x_1x_2=4m\Rightarrow x_2=\dfrac{4m}{x_1}=\dfrac{4.2}{4}=2\)
Cho phương trình: x^2 -2(m+1)x-4m=0
a. xác định m để phương trình có nghiệm kép?
b. Xác định m để phương trình có một nghiệm bằng 4? Tìm nghiệm còn lại
c. Với điều kiện nào của m thì phương trình có nghiệm cũng cùng dấu hoặc nghiệm kép
Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)
cho phương trình: x2 - 2(m - 1)x +m2 + 4m + 13 = 0 (1)
a) xác định m để phương trình (1) có nghiệm
b) xác định m để phương trình (1) có hai nghiệm
x2 - 2(m - 1)x +m2 + 4m + 13 = 0 (1) \(\left(a=1;b=-2\left(m-1\right);c=m^2+4m+13\right)\)
Ta có \(\Delta'=\left(-\left(m-1\right)\right)^2-1.\left(m^2+4m+13\right)\)
\(=m^2-2m+1-m^2-4m-13\)
\(=-6m-12=-6\left(m+2\right)\)
a+b, Để phương trình (1) có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow-6\left(m+2\right)\ge0\)
\(\Leftrightarrow m+2\le0\)
\(\Leftrightarrow m\le-2\)
Câu b giống với câu a nhé!
bài 5 xác định m để phương trình :3x+m-x-1=0 nhận x=-3 là nghiệm
bài 6 tìm m để phương trình :(2m-4).x+6=0 có nghiệm x=1
Bài 5 :
Thay \(x=-3\) vào pt : \(3x+m-x-1=0\)
\(\Leftrightarrow3\left(-3\right)+m-\left(-3\right)-1=0\)
\(\Leftrightarrow-9+m+3-1=0\)
\(\Leftrightarrow m-7=0\)
\(\Leftrightarrow m=7\)
Vậy \(m=7\) để pt nhận \(x=-3\) là nghiệm
Bài 6 :
Thay \(x=1\) vào pt : \(\left(2m-4\right)x+6=0\)
\(\Leftrightarrow2mx-4x+6=0\)
\(\Leftrightarrow2m-4+6=0\)
\(\Leftrightarrow2m+2=0\)
\(\Leftrightarrow m=-1\)
Vậy \(m=-1\) để pt nhận \(x=1\) là nghiệm