\(\dfrac{1}{4}=...\)
Thu gọn
S = \(\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+\dfrac{1}{4^4}+\dfrac{1}{4^5}+\dfrac{1}{4^6}+...+\dfrac{1}{4^{29}}+\dfrac{1}{4^{30}}\)
\(S=\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{30}}\)
\(\Rightarrow4S=1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{29}}\)
\(\Rightarrow3S=4S-S=1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{29}}-\dfrac{1}{4}-\dfrac{1}{4^2}-...-\dfrac{1}{4^{30}}=1-\dfrac{1}{4^{30}}\)
\(\Rightarrow S=\dfrac{1-\dfrac{1}{4^{30}}}{3}\)
Tính (theo mẫu).
Mẫu: \(2+\dfrac{1}{6}=\dfrac{12}{6}+\dfrac{1}{6}=\dfrac{13}{6};1-\dfrac{1}{4}=\dfrac{4}{4}-\dfrac{1}{4}=\dfrac{3}{4}\) |
a) \(1+\dfrac{4}{9}\) b) \(5+\dfrac{1}{2}\) c) \(3-\dfrac{5}{6}\) d) \(\dfrac{31}{7}-2\)
a) \(1+\dfrac{4}{9}=\dfrac{9}{9}+\dfrac{4}{9}=\dfrac{9+4}{9}=\dfrac{13}{9}\)
b) \(5+\dfrac{1}{2}=\dfrac{10}{2}+\dfrac{1}{2}=\dfrac{10+1}{2}=\dfrac{11}{2}\)
c) \(3-\dfrac{5}{6}=\dfrac{18}{6}-\dfrac{5}{6}=\dfrac{18-5}{6}=\dfrac{13}{6}\)
d) \(\dfrac{31}{7}-2=\dfrac{31}{7}-\dfrac{14}{7}=\dfrac{31-14}{7}=\dfrac{17}{7}\)
Tính:
a/\(\dfrac{1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}}{1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}:\dfrac{3+\dfrac{3}{2}+\dfrac{3}{3}+\dfrac{3}{4}}{2-\dfrac{2}{2}+\dfrac{2}{3}-\dfrac{2}{4}}\)
b/\(\dfrac{1+\dfrac{1}{4}+\dfrac{1}{1+\dfrac{1}{4}}}{1-\dfrac{1}{4}-\dfrac{1}{1-\dfrac{1}{4}}}\)
c/\(\dfrac{\dfrac{2}{5}-\dfrac{7}{5}}{\dfrac{2}{5}-\dfrac{\dfrac{3}{4}}{\dfrac{3}{4}.\dfrac{3}{7}-1}}-\dfrac{1}{\dfrac{3}{7}\left(\dfrac{3}{4}.\dfrac{3}{7}.\dfrac{2}{5}-\dfrac{2}{5}-\dfrac{3}{4}\right)}\)
d/\(\left(\dfrac{\dfrac{4}{3}}{2+\dfrac{4}{3}}+\dfrac{2-\dfrac{4}{3}}{\dfrac{4}{3}}\right).\left(\dfrac{\dfrac{2}{3}}{4+\dfrac{2}{3}}-\dfrac{4-\dfrac{2}{3}}{\dfrac{2}{3}}\right)\)
Giúp mik với các bạn ơi 1 bài thôi cug đc.
a
= { 1*( 1+1/2+1/3+1/4) } / { 1 * ( 1-1/2 +1/3-1/4)} : { 3*(1+1/2+1/3+1/4)} / { 2*( 1-1/2 +1/3-1/4)}
Sau đó bn tự tính ra nhé cứ tính nhu bình thường sẽ ra.
Mà mình thấy máy câu này yêu cầu tính chứ có bảo tính theo cách hợp lí đâu? Vì thế bn cứ lấy máy tính tính như bình thường là được .
Tính hợp lí:
a) A = \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\) + \(\dfrac{1}{90}\) + \(\dfrac{1}{110}\) + \(\dfrac{1}{132}\) + \(\dfrac{1}{156}\) ;
b) B = \(\dfrac{4}{21}\) + \(\dfrac{4}{77}\) + \(\dfrac{4}{165}\) + \(\dfrac{4}{285}\) +\(\dfrac{4}{437}\) +\(\dfrac{4}{621}\);
c) C = \(\dfrac{1}{21}\) + \(\dfrac{1}{77}\) +\(\dfrac{1}{165}\) +\(\dfrac{1}{285}\) +\(\dfrac{1}{437}\) +\(\dfrac{1}{621}\) ;
d) D = \(\dfrac{1}{1.6}\) + \(\dfrac{1}{6.11}\) +\(\dfrac{1}{11.16}\) +\(\dfrac{1}{16.21}\) +\(\dfrac{1}{26.31}\) .
Giải:
a)A=1/56+1/72+1/90+1/110+1/132+1/156
A=1/7.8+1/8.9+1/9.10+1/10.11+1/11.12+1/12.13
A=1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11+1/11-1/12+1/12-1/13
A=1/7-1/13
A=6/91
b)B=4/21+4/77+4/165+4/285+4/437+4/621
B=4/3.7+4/7.11+4/11.15+4/15.19+4/19.23+4/23.27
B=1/3-1/7+1/7-1/11+1/11-1/15+1/15-1/19+1/19-1/23+1/23-1/27
B=1/3-1/27
B=8/27
c) C=1/21+1/77+1/165+1/285+1/437+1/621
C=1/3.7+1/7.11+1/11.15+1/15.19+1/19.23+1/23.27
C=1/4.(4/3.7+4/7.11+4/11.15+4/15.19+4/19.23+4/23.27)
C=1/4.(1/3-1/7+1/7-1/11+1/11-1/15+1/15-1/19+1/19-1/23+1/23-1/27)
C=1/4.(1/3-1/27)
C=1/4.8/27
C=2/27
d) D=1/1.6+1/6.11+1/11.16+1/16.21+1/21.26+1/26.31
D=1/5.(5/1.6+5/6.11+5/11.16+5/16.21+5/21.26+5/26.31)
D=1/5.(1/1-1/6+1/6-1/11+1/11-1/16+1/16-1/21+1/21-1/26+1/26-1/31)
D=1/5.(1/1-1/31)
D=1/5.30/31
D=6/31
Nếu câu d cậu viết thiếu thì làm như vầy nhé!
Chúc bạn học tốt!
Nếu như câu d ko chép sai thì làm thế này nha:
d) D=1/1.6+1/6.11+1/11.16+1/16.21+1/26.31
D=1/5.(5/1.6+5/6.11+5/11.16+5/16.21)+1/806
D=1/5.(1/1-1/6+1/6-1/11+1/11-1/16+1/16-1/21)+1/806
D=1/5.(1/1-1/21)+1/806
D=1/5.20/21+1/806
D=4/21+1/806
D=3245/16926
Chúc bạn học tốt!
Tính :
\(A=\dfrac{\left(1+\dfrac{1}{4}\right)\left(3^4+\dfrac{1}{4}\right)\left(5^4+\dfrac{1}{4}\right)....\left(29^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right)\left(4^4+\dfrac{1}{4}\right)\left(6^4+\dfrac{1}{4}\right).....\left(30^4+\dfrac{1}{4}\right)}\)
Ta có một số phân tích sau : \(a^4\)\(+\)\(4\)\(=\)\(\left(a^2-2a+2\right)\)\(\left(a^2+2a+2\right)\)
Nhân mỗi biểu thức trong ngoặc ở cả tử thức với \(16\)\(=\)\(2^4\), ta được :
\(A\)\(=\)\(\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(30^4+\frac{1}{4}\right)}\)
\(A\)\(=\)\(\frac{\left(2^4+4\right)\left(6^4+4\right)\left(10^4+4\right)...\left(58^4+4\right)}{\left(4^4+4\right)\left(8^4+4\right)\left(12^4+4\right)...\left(60^4+4\right)}\)
Kết hợp với phân tích nêu trên, khi đó :
\(A\)\(=\)\(\frac{\left(2^2-2.2+2\right)\left(2^2+2.2+2\right)\left(6^2-2.6+2\right)\left(6^2+2.6+2\right)....\left(58^2-2.58+2\right)\left(58^2+2.58+2\right)}{\left(4^2-2.4+2\right)\left(4^2+2.4+2\right)\left(8^2-2.8+2\right)\left(8^2+2.8+2\right)....\left(60^2-2.60+2\right)\left(60^2+2.60+2\right)}\)
\(\Rightarrow\)\(A\)\(=\)\(\frac{2.10.26.50.82.122....3250.3482}{10.26.50.82.122....3482.3722}\)\(=\)\(\frac{2}{3722}\)\(=\)\(\frac{1}{1861}\)
Rút gọn
\(E=\dfrac{\left(1^4+\dfrac{1}{4}\right)\left(3^4+\dfrac{1}{4}\right)\left(5^4+\dfrac{1}{4}\right)....\left(11^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right)\left(4^4+\dfrac{1}{4}\right)\left(6^4+\dfrac{1}{4}\right)....\left(12^4+\dfrac{1}{4}\right)}\)
Rút gọn
\(E=\dfrac{\left(1^4+\dfrac{1}{4}\right)\left(3^4+\dfrac{1}{4}\right)\left(5^4+\dfrac{1}{4}\right)...\left(11^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right)\left(4^4+\dfrac{1}{4}\right)\left(6^4+\dfrac{1}{4}\right)...\left(12^4+\dfrac{1}{4}\right)}\)
Đặt :
\(PHUC=\dfrac{\left(1^4+\dfrac{1}{4}\right)\left(3^4+\dfrac{1}{4}\right)\left(5^4+\dfrac{1}{4}\right)..........\left(11^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right)\left(4^4+\dfrac{1}{4}\right).........\left(12^4+\dfrac{1}{4}\right)}\)
\(\Leftrightarrow PHUC=\dfrac{\left(1^2+1+\dfrac{1}{2}\right)\left(1^2-1+\dfrac{1}{2}\right)......\left(11^2-11+\dfrac{1}{2}\right)}{\left(2^2+2+\dfrac{1}{2}\right)\left(2^2-2+\dfrac{1}{2}\right)........\left(12^2-12+\dfrac{1}{2}\right)}\)
\(\Leftrightarrow PHUC=\dfrac{\dfrac{1}{2}\left(1.2+\dfrac{1}{2}\right)\left(2.3+\dfrac{1}{2}\right).........\left(11.12+\dfrac{1}{2}\right)}{\left(2.3+\dfrac{1}{2}\right)\left(1.2+\dfrac{1}{2}\right).........\left(12.13+\dfrac{1}{2}\right)}\)
\(\Leftrightarrow PHUC=\dfrac{\dfrac{1}{2}}{12.13+\dfrac{1}{2}}\)
\(\Leftrightarrow PHUC=\dfrac{1}{313}\)
Rút gọn
A=\(\dfrac{\left(1^4+\dfrac{1}{4}\right)\left(3^4+\dfrac{1}{4}\right)\left(5^4+\dfrac{1}{4}\right)...\left(11^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right)\left(4^4+\dfrac{1}{4}\right)\left(6^4+\dfrac{1}{4}\right)...\left(12^4+\dfrac{1}{4}\right)}\)
Rút gọn: \(A=\dfrac{\left(1+\dfrac{1}{4}\right)\left(3^4+\dfrac{1}{4}\right)\left(5^4+\dfrac{1}{4}\right)...\left(51^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right)\left(4^4+\dfrac{1}{4}\right)\left(6^4+\dfrac{1}{4}\right)...\left(52^4+\dfrac{1}{4}\right)}\)
\(A=\dfrac{\left(1+\dfrac{1}{4}\right)\left(3^4+\dfrac{1}{4}\right)........\left(51^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right)\left(4^4+\dfrac{1}{4}\right).....\left(52^4+\dfrac{1}{4}\right)}\)
\(=\dfrac{\left(1+1+\dfrac{1}{2}\right)\left(1-1+\dfrac{1}{2}\right)......\left(11^2-11+\dfrac{1}{2}\right)}{\left(2+2^2+\dfrac{1}{2}\right)\left(2^2-2+\dfrac{1}{2}\right)........\left(12^2-12+\dfrac{1}{2}\right)}\)
\(=\dfrac{\dfrac{1}{2}\left(1.2+\dfrac{1}{2}\right)\left(2.3+\dfrac{1}{2}\right).......\left(11.12+\dfrac{1}{2}\right)}{\left(2.3+\dfrac{1}{2}\right)\left(3.4+\dfrac{1}{2}\right).......\left(12.13+\dfrac{1}{2}\right)}\)
\(=\dfrac{\dfrac{1}{2}}{12.13+\dfrac{1}{2}}\)
\(=\dfrac{1}{313}\)
2 Chứng minh:
a) \(\dfrac{1}{n}.\dfrac{1}{n+4}=\dfrac{1}{4}.(\dfrac{1}{n}-\dfrac{1}{n+4})\) b)Tính A=\(\dfrac{4}{3}.\dfrac{4}{7}+\dfrac{4}{7}.\dfrac{4}{11}+...+\dfrac{4}{95}.\dfrac{4}{99}\)
a, Ta có: \(\dfrac{1}{n}.\dfrac{1}{n+4}=\dfrac{1}{n.\left(n+4\right)}=\dfrac{1}{4}.\dfrac{4}{n.\left(n+1\right)}=\dfrac{1}{4}.\left(\dfrac{1}{n}-\dfrac{1}{n+4}\right)\)
Vậy \(\dfrac{1}{n}.\dfrac{1}{n+1}=\dfrac{1}{4}.\left(\dfrac{1}{n}-\dfrac{1}{n+4}\right)\)
b, \(A=\dfrac{4}{3}.\dfrac{4}{7}+\dfrac{4}{7}.\dfrac{4}{11}+...+\dfrac{4}{95}.\dfrac{4}{99}=4.\left(\dfrac{4}{3.7}+\dfrac{4}{7.11}+...+\dfrac{4}{95.99}\right)\)
\(=4.\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{99}\right)\)
\(=4.\left(\dfrac{1}{3}-\dfrac{1}{99}\right)=4.\dfrac{32}{99}=\dfrac{128}{99}\)
Vậy \(A=\dfrac{128}{99}\)