Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngan Nguyen Thi Kim
Xem chi tiết
Mai Anh
Xem chi tiết
....
16 tháng 6 2021 lúc 10:18

    1 + sinx + cosx + sin2x + cos2x = 0

<=> sin^2x+ cos^2 x + ( sinx+cosx) + 2.sinx.cosx + ( cos^2 x - sin^2 x)=0

<=> 2 cos^2 x + 2sinx.cosx + sinx + cosx =0

<=> 2cosx ( cos x + sinx) + sinx + cosx = 0

<=> ( cosx + sinx ) (2 cos x + 1 ) = 0

<=> cosx + sinx = 0 hoặc 2cosx + 1 =0

 

Nguyễn Thị Kim Nguyên
Xem chi tiết
Moon Jim Kim
Xem chi tiết
Hân Ngọc
29 tháng 4 2020 lúc 21:32

\(a,\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4sin^2x.cos^2x}=-1\)

\(VT=\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4.sin^2x.cos^2x}=\left(\frac{1}{tan2x}\right)^2-\frac{1}{sin^22x}=\left(\frac{cos2x}{sin2x}\right)^2-\frac{1}{sin^22x}=\frac{cos^22x-1}{sin^22x}=\frac{-sin^22x}{sin^22x}=-1=VP\)

b, \(VT=\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}=\frac{cos2x}{\left(sin^2x+cos^2x\right)^2-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{1-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{cos^2x-2.sin^2x.cos^2x}\)

=\(\frac{cos2x}{cos^2x.\left(1-2.sin^2x\right)}=\frac{cos2x}{cos^2x.cos2x}=\frac{1}{cos^2x}=1+tan^2x=VP\)

d, \(VT=\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\left(\frac{cosx}{1+sinx}+\frac{sinx}{cosx}\right).\left(\frac{sinx}{1+cosx}+\frac{cosx}{sinx}\right)\)

\(=\left(\frac{cos^2x+sinx.\left(1+sinx\right)}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx.\left(1+cosx\right)}{sinx.\left(1+cosx\right)}\right)=\left(\frac{cos^2x+sinx+sin^2x}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx+cos^2x}{sinx.\left(1+cosx\right)}\right)\)

=\(\frac{1}{cosx.sinx}=VP\)

e, \(VT=cos^2x.\left(cos^2x+2sin^2x+sin^2x.tan^2x\right)=cos^2x.\left(1+sin^2x.\left(1+tan^2x\right)\right)=cos^2x.\left(1+tan^2x\right)=cos^2x.\frac{1}{cos^2x}=1=VP\)

c, \(VT=\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cosx\right)}=\frac{sin^3x.\left(1+cosx\right)-cos^3x.\left(1+tanx\right)}{sinx.cosx.\left(1+tanx\right).\left(1+cosx\right)}\)

=\(\frac{sin^3x+sin^3x.cotx-cos^3x-cos^3.tanx}{\left(sinx+cosx\right)^2}=\frac{sin^3x+sin^2xcosx-cos^3x-cos^2sinx}{\left(sinx+cosx\right)^2}=\frac{sin^2x.\left(sinx+cosx\right)-cos^2x.\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}\)

\(=\frac{\left(sin^2x-cos^2x\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=\frac{\left(sinx-cosx\right).\left(sinx+cosx\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=sinx-cosx=VP\)

Đây nha bạn

Nguyễn Hà Chi
Xem chi tiết
Nguyễn Hà Chi
5 tháng 11 2019 lúc 16:10

đề bài đầy đủ: rút gọn các biểu thức lượng giác sau trên điều kiện xác định của chúng:

Khách vãng lai đã xóa
Nguyễn Việt Lâm
6 tháng 11 2019 lúc 8:34

\(\frac{sin^2x}{cosx+cosx.\frac{sinx}{cosx}}-\frac{cos^2x}{sinx+sinx.\frac{cosx}{sinx}}=\frac{sin^2x}{sinx+cosx}-\frac{cos^2x}{sinx+cosx}=\frac{sin^2x-cos^2x}{sinx+cosx}\)

\(=\frac{\left(sinx+cosx\right)\left(sinx-cosx\right)}{sinx+cosx}=sinx-cosx\)

\(\left(\frac{sinx}{cosx}+\frac{cosx}{1+sinx}\right)\left(\frac{cosx}{sinx}+\frac{sinx}{1+cosx}\right)=\left(\frac{sinx+sin^2x+cos^2x}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+cos^2x+sin^2x}{sinx\left(1+cosx\right)}\right)\)

\(=\left(\frac{sinx+1}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+1}{sinx\left(1+cosx\right)}\right)=\frac{1}{sinx.cosx}\)

Khách vãng lai đã xóa
Nguyễn Thái Hoàng
Xem chi tiết
Hung nguyen
3 tháng 5 2017 lúc 10:35

\(1+tanx+tan^2x+tan^3x\)

\(1+\dfrac{sinx}{cosx}+\dfrac{sin^2x}{cos^2x}+\dfrac{sin^3x}{cos^3x}\)

\(=\dfrac{cos^3x+sinx.cos^2x+sin^2x.cosx+sin^3x}{cos^3x}\)

\(=\dfrac{cos^2x.\left(sinx+cosx\right)+sin^2x.\left(sinx+cosx\right)}{cos^3x}\)

\(=\dfrac{\left(sin^2x+cos^2x\right)\left(sinx+cosx\right)}{cos^3x}=\dfrac{sinx+cosx}{cos^3x}\)

Thúy Hằng
6 tháng 5 2017 lúc 17:14

\(\dfrac{\sin x+\cos x}{\cos x}.\dfrac{1}{\cos^2x}=\left(\tan x+1\right)\left(\tan^2x+1\right)=\tan^4x+\tan x+\tan^2x+\left(đpcm\right)\)

An Sơ Hạ
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2019 lúc 21:38

a/

\(\left(\frac{sin2x}{cos2x}-\frac{sinx}{cosx}\right)cos2x=\left(\frac{sin2x.cosx-cos2x.sinx}{cos2x.cosx}\right).cos2x\)

\(=\frac{sin\left(2x-x\right)}{cosx}=\frac{sinx}{cosx}=tanx\)

b/

\(2\left(1-sinx\right)\left(1+cosx\right)=2+2cosx-2sinx-2sinxcosx\)

\(=1+sin^2x+cos^2x-2sinx+2cosx-2sinx.cosx\)

\(=\left(1-sinx+cosx\right)^2\)

c/

\(1+cotx+cot^2x+cot^3x=1+cotx+cot^2x\left(1+cotx\right)\)

\(=\left(1+cotx\right)\left(1+cot^2x\right)=\left(1+\frac{cosx}{sinx}\right)\left(1+\frac{cos^2x}{sin^2x}\right)=\frac{sinx+cosx}{sin^3x}\)

d/

\(\frac{cos3x}{sinx}+\frac{sin3x}{cosx}=\frac{cos3x.cosx+sin3x.sinx}{sinx.cosx}=\frac{cos\left(3x-x\right)}{\frac{1}{2}2sinx.cosx}=\frac{2cos2x}{sin2x}=2cot2x\)

Vy Le
Xem chi tiết
Nguyễn Quỳnh
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 5 2020 lúc 21:42

\(cot^2x-cos^2x=\frac{cos^2x}{sin^2x}-cos^2x=cos^2x\left(\frac{1}{sin^2x}-1\right)=\frac{cos^2x\left(1-sin^2x\right)}{sin^2x}\)

\(=cos^2x.\left(\frac{cos^2x}{sin^2x}\right)=cot^2x.cos^2x\)

\(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=\frac{\left(cosx+sinx\right)^2-\left(cosx-sinx\right)^2}{\left(cosx-sinx\right)\left(cosx+sinx\right)}\)

\(=\frac{cos^2x+sin^2x+2sinx.cosx-\left(cos^2x+sin^2x-2sinx.cosx\right)}{cos^2x-sin^2x}=\frac{4sinx.cosx}{cos2x}=\frac{2sin2x}{cos2x}=2tan2x\)

\(\frac{sin4x+cos2x}{1-cos4x+sin2x}=\frac{2sin2x.cos2x+cos2x}{1-\left(1-2sin^22x\right)+sin2x}=\frac{cos2x\left(2sin2x+1\right)}{sin2x\left(2sin2x+1\right)}=\frac{cos2x}{sin2x}=cot2x\)

\(A=sin^2x\left(sinx+cosx\right)+cos^2x\left(sinx+cosx\right)\)

\(=\left(sin^2x+cos^2x\right)\left(sinx+cosx\right)=sinx+cosx\)

\(B=\frac{sinx}{cosx}\left(\frac{1+cos^2x-sin^2x}{sinx}\right)=\frac{sinx}{cosx}\left(\frac{2cos^2x}{sinx}\right)=2cosx\)