Giải phương trình:
a, \(Tanx+Cosx-Cos^2x=Sinx\left(1+Tanx.Tan\dfrac{x}{2}\right)\)
b, \(1+Sinx+Cosx+Sin2x+Cos2x=0\)
giải pt
a) \(cosx\left(3tanx-\sqrt{3}\right)=0\)
b) \(\frac{\left(2-sinx\right)\left(\sqrt{3}cosx-1\right)}{1+sinx}+2=sinx\)
c) \(\frac{tanx-sinx}{sin^3x}=\frac{1}{cosx}\)
d) \(\frac{sin3x.cosx-sinx.cos3x}{cos^2x}=2\sqrt{3}\)
Giải pt
\(a.sin^3x+cos^3x=\dfrac{\sqrt{2}}{2}\)
\(b.sin^3x+cos^3x-sinx-cosx=cos2x\)
\(c.\left(2+\sqrt{2}\right)\left|sinx+cosx\right|-sin2x=1+2\sqrt{2}\)
\(\frac{2sin5x}{sinx+cosx}+\frac{1}{2}sin2x=sin^4x+cos^4x+sin^2x.cos^2x\)
•Sin3x - sin5x = sin2x
•Cosx + cos2x + cos3x = -1
•Sin2x + sin22x +sin23x + sin24x = 2
•1 + 2 sinxcos2x = sinx + cos2x
•Tan3x - tanx = sin2x
•(1-tanx)(1+sin2x) = 1+ tanx
\(\frac{ }{ }\)
• Cos(3 - 2x) + cosx =0
• Cos(3 - 2x) - sinx =0
• Cos(3 + 2x) + sinx =0
• Sin4x - √3sin2x =0
M.n giúp mình với ạ 💓
Giải PT
a) sin2 x + 2sinx - 3 = 0
b) 2cos x + cos 2x = 0
c) tanx + cotx + 2 = 0
d) sinx + cos2x + 1 = 0
e) tan x + cot 2x = 0
a, 3 cos2x + 5 sinx - 5 = 0
b, 2 cos2 - sinx - cosx - 2 sin2x -1 = 0
giải phương trình
\(\frac{1}{tanx+cot2x}=\frac{\sqrt{2}\left(cosx-sinx\right)}{cotx-1}\)