a/ \(cos\left(3-2x\right)=-cosx=cos\left(\pi-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3-2x=\pi-x+k2\pi\\3-2x=x-\pi+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3-\pi+k2\pi\\x=1+\frac{\pi}{3}+\frac{k2\pi}{3}\end{matrix}\right.\)
b/ \(cos\left(3-2x\right)=sinx=cos\left(\frac{\pi}{2}-x\right)\)
\(\Rightarrow\left[{}\begin{matrix}3-2x=\frac{\pi}{2}-x+k2\pi\\3-2x=x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3-\frac{\pi}{2}+k2\pi\\x=1+\frac{\pi}{6}+\frac{k2\pi}{3}\end{matrix}\right.\)
c/ Tương tự câu trên \(cos\left(3+2x\right)=-sinx=cos\left(\frac{\pi}{2}+x\right)\Rightarrow...\)
d/ \(sin4x-\sqrt{3}sin2x=0\)
\(\Leftrightarrow2sin2x.cos2x-\sqrt{3}sin2x=0\)
\(\Leftrightarrow sin2x\left(2cos2x-\sqrt{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sin2x=0\\cos2x=\frac{\sqrt{3}}{2}\end{matrix}\right.\) \(\Rightarrow...\)