cho pt x^2-5x+3m+1=0.tim m de pt co 2 nghiem phan biet thoa man |x1^2-x2^2|=15
1> cho PT : \(x^2-4x+m=0\)
a) Tim m de PT co 2 nghiem phan biet
b) Tim m de phuong trinh co 2 nghiem x1 , x2 thoa man :
\(x1^3+x2^3-5\left(x1^2+x2^2\right)=26\)
cho pt: x^2-2.(m-2)+m^2=2m-3
Tim m de pt co 2 nghiem phan biet x1,x2 thoa man
\(\frac{1}{x1}+\frac{1}{x2}=\frac{x1+x2}{x}\)
cac ban oi giup minh di minh can gap lam
Cho PT (m+1)x^2+2mx+m-1=0. Tim gia tri cua m de PT co 2 nghiem phan biet x1, x2 sao cho x1^2+x2^2=5
PT có 2 nghiệm phân biệt
\(\Leftrightarrow\text{Δ}>0\Leftrightarrow\left(2m\right)^2-4.\left(m+1\right)\left(m-1\right)>0\)
\(\Leftrightarrow4m^2-4\left(m^2-1\right)>0\Leftrightarrow4>0\)(luôn đúng)
Vậy PT luôn có 2 nghiệm phân biệt
Theo hệ thức Viét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{2m}{m+1}\\x_1.x_2=\dfrac{m-1}{m+1}\end{matrix}\right.\)
Mà theo GT thì ta có:
\(x_1^2+x_2^2=5\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=5\)
\(\Leftrightarrow\left(\dfrac{-2m}{m+1}\right)^2-2.\dfrac{m-1}{m+1}=5\)
\(\Leftrightarrow\dfrac{4m^2}{\left(m+1\right)^2}-\dfrac{2\left(m-1\right)}{m+1}=5\)
\(\Leftrightarrow\dfrac{1}{m+1}\left[\dfrac{4m^2}{m+1}-2\left(m-1\right)\right]=5\)
\(\Leftrightarrow\dfrac{2m^2+2}{m^2+2m+1}=5\)
\(\Leftrightarrow2m^2+2=5m^2+10m+5\)
\(\Leftrightarrow3m^2+10m+3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{1}{3}\\m=-3\end{matrix}\right.\)
ch pt: \(x^3-3\left(m+1\right)x^2+2mx+m+2=0\)
tim m de phuong trinh co 3 nghiem phan biet
thoa man: \(x1+x2=2x3\)
\(\Leftrightarrow x^3-3x^2+2-\left(3x^2-2x-1\right)m=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-2x-2\right)-\left(x-1\right)\left(3mx+m\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-\left(3m+2\right)x-m-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-\left(3m+2\right)x-m-2=0\left(1\right)\end{matrix}\right.\)
(1) luôn có 2 nghiệm pb. Để pt có 3 nghiệm pb \(\Rightarrow1-\left(3m+2\right)-m-2\ne0\Rightarrow m\ne-\dfrac{3}{4}\)
TH1: \(x_3=1\) và \(x_1;x_2\) là nghiệm của (1)
\(\Rightarrow3m+2=2\Rightarrow m=0\) (thỏa mãn)
TH2: \(x_1=1\) và \(x_2;x_3\) là nghiệm của (1)
Kết hợp hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_2=2x_3-1\\x_2+x_3=3m+2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=2x_3-1\\x_3=m+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=2m+1\\x_3=m+1\end{matrix}\right.\)
Thế vào \(x_2x_3=-m-2\)
\(\Rightarrow\left(2m+1\right)\left(m+1\right)=-m-2\)
\(\Rightarrow2m^2+4m+3=0\) (vô nghiệm)
Vậy \(m=0\)
1) tim m de pt co 2 nghiem x1;x2 thoa man
Ptr có nghiệm `<=>\Delta' >= 0`
`<=>[-(m+1)^2]-6m+4 >= 0`
`<=>m^2+2m+1-6m+4 >= 0`
`<=>m^2-4m+5 >= 0<=>(m-2)^2+1 >= 0` (LĐ `AA m`)
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2m+2),(x_1.x_2=c/a=6m-4):}`
Có:`(2m-2)x_1+x_2 ^2-4x_2=4`
`<=>(x_1+x_2-4)x_1+x_2 ^2-4x_2=4`
`<=>x_1 ^2+x_1 x_2 -4x_1+x_2 ^2-4x_2=4`
`<=>(x_1+x_2)^2-x_1x_2-4(x_1+x_2)=4`
`<=>(2m+2)^2-(6m-4)-4(2m+2)=4`
`<=>4m^2+8m+4-6m+4-8m-8=4`
`<=>4m^2-6m-4=0`
`<=>(2m-3/2)^2-25/4=0`
`<=>|2m-3/2|=5/2`
`<=>[(m=2),(m=-1/2):}`
cho pt x^2 -6x +2m - 3=0 . timf m ddeer pt co hai nghiem phan birt thoa man (x1^2-5x1+2m-4) (x2^2-5x2+2m-4)=2
\(x^2-6x+2m-3=0\)
\(\Delta=b^2-4ac=36-4\left(2m-3\right)=36-8m+12=48-8m\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)\(< =>48-8m>0< =>48>8m< =>6>m\)
Theo Vi-ét ta có :\(\hept{\begin{cases}x_1x_2=\frac{c}{a}=2m-3\\x_1+x_2=\frac{-b}{a}=6\end{cases}}\)là
\(x_1\)là nghiệm phương trình \(x_1^2-6x_1+2m-3=0\)
\(=>x_1^2=3-2m+6x_1\)
\(x_2\)là nghiệm phương trình \(x_2^2-6x_2+2m-3=0\)
\(=>x_2^2=3-2m+6x_2\)
Mà \(\left(x_1^2-5x_1+2m-4\right)\left(x_2^2-5x_2+2m-4\right)=2\)
\(\left(3-2m+6x_1-5x_1+2m-4\right)\left(3-2m+6x_2-5x_2+2m-4\right)=2\)
\(\left(3+x_1-4\right)\left(3+x_2-4\right)=2\)
\(\left(x_1-1\right)\left(x_2-1\right)=2\)
\(x_1x_2-x_1-x_2+1=2\)
\(x_1x_2-\left(x_1+x_2\right)=1\)
\(2m-3-6=1\)
\(2m-9=1\)
\(m=5\)
Vậy m=5
1) tim m de pt \(x^2-2\left(m+1\right)x+6m-4=0\)co 2 nghiem x1;x2 thoa man \(\left(2m-2\right)x_1+x_2^2-4x_2=4\)
Lời giải:
Ta thấy $\Delta'=(m+1)^2-(6m-4)=(m-2)^2+1>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm pb $x_1,x_2$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=6m-4\end{matrix}\right.\)
Khi đó:
$(2m-2)x_1+x_2^2-4x_2=4$
$x_2^2-2(m+1)x_2+6m-4=0$
$\Rightarrow 2(m+1)x_2-4x_2+(2m-2)x_1-6m=0$ (trừ theo vế)
$\Leftrightarrow (2m-2)(x_1+x_2)=6m$
$\Leftrightarrow (2m-2)(2m+2)=6m$
$\Leftrightarrow 2m^2-2-3m=0$
$\Rightarrow m=2$ hoặc $m=-\frac{1}{2}$ (thỏa mãn)
Vậy.........
cho pt: \(x^4-2mx^2+2m-1=0\)
tim m de pt co 3 nghiem phan biet
Pt trùng phương chỉ có các trường hợp
- Vô nghiệm
- Có 2 nghiệm phân biệt
- Có 4 nghiệm phân biệt
- Có 2 nghiệm kép
- Có 3 nghiệm (trong đó 2 nghiệm pb và 1 nghiệm kép \(x=0\))
Không tồn tại trường hợp có 3 nghiệm pb
\(x^4-2mx^2+\left(2m-1\right)=0\left(1\right)\)
Đặt \(t=x^2\), pt trở thành:
\(t^2-2mt+\left(2m-1\right)=0\left(2\right)\)
Để pt(1) có 3 nghiệm thì pt(2) có 1 nghiệm dương khác 0 và 1 nghiệm bằng 0
\(\Leftrightarrow2m-1=0\Leftrightarrow m=\dfrac{1}{2}\\ \Leftrightarrow t^2-t=0\\ \Leftrightarrow\left[{}\begin{matrix}t=0\\t=1\end{matrix}\right.\left(nhận\right)\)
Vậy \(m=\dfrac{1}{2}\)
pt; \(x^2-\left(3m-1\right).x+2m^2-m=0\)\(0\)
Tim m đê pt co 2 nghiêm phân biêt x1;x2 thoa man /x1-x2/-2 =0
Để pt có 2 nghiệm phân biệt thì:
\(\Delta=\left(3m-1\right)^2-4\left(2m^2-m\right)>0\)
\(\Leftrightarrow m^2-2m+1>0\)
\(\Leftrightarrow m\ne1\)
Theo vi-et ta có: \(\hept{\begin{cases}x_1+x_2=3m-1\\x_1x_2=2m^2-m\end{cases}}\)
Ta có: \(\left|x_1-x_2\right|-2=0\)
\(\Leftrightarrow\left|x_1-x_2\right|=2\)
\(\Leftrightarrow x^2_1-2x_1x_2+x^2_2=4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)
\(\Leftrightarrow\left(3m-1\right)^2-4\left(2m^2-m\right)=4\)
\(\Leftrightarrow m^2-2m-3=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=3\\m=-1\end{cases}}\)
Bài này không dùng vi_et đúng là dài thật: (hiểu "Tam giác" rồi chính thức gia nhập giải lớp 9 không giao luu nữa")
Bạn ngonhuminh, có cách còn ngắn hơn nhiều nữa kìa.
(Ghi chú: Nếu làm nháp thấy "delta" ra là một bình phương thì chắc chắn pt có nghiệm đẹp.)
Mà nếu biết trước có nghiệm đẹp thì phán một câu như thế này là đủ:
\(x=\frac{3m-1+m-1}{2}=2m-1\) và \(x=\frac{3m-1-\left(m-1\right)}{2}=m\)l là 2 số có tổng bằng "gì đó", tích bằng "gì đó" nên là nghiệm pt trên.
Tới đây giải như sau:
Do biểu thức \(\left|x_1-x_2\right|-2\) đối xứng theo 2 biến nên không mất tính tổng quát giả sử \(x_1=2m-1,x_2=m\).
(Giải tiếp)