Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thái Sơn

1) tim m de pt \(x^2-2\left(m+1\right)x+6m-4=0\)co 2 nghiem x1;x2 thoa man \(\left(2m-2\right)x_1+x_2^2-4x_2=4\)

Akai Haruma
24 tháng 7 2020 lúc 15:05

Lời giải:

Ta thấy $\Delta'=(m+1)^2-(6m-4)=(m-2)^2+1>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm pb $x_1,x_2$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=6m-4\end{matrix}\right.\)

Khi đó:

$(2m-2)x_1+x_2^2-4x_2=4$

$x_2^2-2(m+1)x_2+6m-4=0$

$\Rightarrow 2(m+1)x_2-4x_2+(2m-2)x_1-6m=0$ (trừ theo vế)

$\Leftrightarrow (2m-2)(x_1+x_2)=6m$

$\Leftrightarrow (2m-2)(2m+2)=6m$

$\Leftrightarrow 2m^2-2-3m=0$

$\Rightarrow m=2$ hoặc $m=-\frac{1}{2}$ (thỏa mãn)

Vậy.........


Các câu hỏi tương tự
Eros Starfox
Xem chi tiết
Big City Boy
Xem chi tiết
ngọc linh
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
Anh Phuong
Xem chi tiết
Big City Boy
Xem chi tiết
Anh Phuong
Xem chi tiết
Anh Mai
Xem chi tiết
Pi Vân
Xem chi tiết