tìm a để a+16 ; a-73 là số chính phương
Cho biểu thức A = \(\left(\dfrac{4x}{x+2}-\dfrac{x^3-8}{x^3+8}.\dfrac{4x^2-8x+16}{x^2-4}\right):\dfrac{16}{x^2-x-6}\)
a) Rút gọn A
b) Tìm x để A < 0
c) Tìm x để A ≥ 5
Tìm số tự nhiên a để a^2+16×a
\(a^2+16\cdot a\)
\(=a\cdot\left(a-16\right)\)
\(A=\frac{x^4-16}{x^4-4x^3+8x^2-16x-16}\)
a) Tìm giá trị của x để giá trị của biểu thức A xác định
b) Rút gọn A
c) Tìm x để A có giá tri bằng 2
d) Tìm các giá trị nguyên của x để A nhận giá trị nguyên
3. P = \(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}\) tìm a để P > 1 với a ≥ 0 , a≠4
4. P= \(\dfrac{\sqrt{a}-1}{\sqrt{a}-4}\) tìm a để P< 1 với a ≥ 0, a≠16
3.
\(P>1\Leftrightarrow\dfrac{\sqrt{a}+1}{\sqrt{a}-2}>1\)
\(\Leftrightarrow\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-1>0\)
\(\Leftrightarrow\dfrac{\sqrt{a}+1-\sqrt{a}+2}{\sqrt{a}-2}>0\)
\(\Leftrightarrow\dfrac{3}{\sqrt{a}-2}>0\)
\(\Leftrightarrow\sqrt{a}-2>0\)
\(\Leftrightarrow a>4\)
Vậy \(a>4,a\ne16\)
3: Để P>1 thì P-1>0
\(\Leftrightarrow\dfrac{\sqrt{a}+1-\sqrt{a}+2}{\sqrt{a}-2}>0\)
\(\Leftrightarrow a>4\)
4.
\(P< 1\Leftrightarrow\dfrac{\sqrt{a}-1}{\sqrt{a}-4}< 1\)
\(\Leftrightarrow\dfrac{\sqrt{a}-1}{\sqrt{a}-4}-1< 0\)
\(\Leftrightarrow\dfrac{\sqrt{a}-1-\sqrt{a}+4}{\sqrt{a}-4}< 0\)
\(\Leftrightarrow\dfrac{3}{\sqrt{a}-4}< 0\)
\(\Leftrightarrow\sqrt{a}-4< 0\)
\(\Leftrightarrow a< 16\)
Vậy \(0\le a< 16\)
Cho phân thức A= x²+8x+16/ x²-16 a) Tìm điều kiện xác định của A. b) Rút gọn phân thức. c) Tìm giá trị của x để phân thức A có giá trị bằng 3. d ) Có giá trị nào của x để giá trị của phân thức A bằng 0 hay không? Tại sao?
Lời giải:
a. ĐKXĐ: $x^2-16\neq 0\Leftrightarrow (x-4)(x+4)\neq 0$
$\Leftrightarrow x\neq \pm 4$
b. $A=\frac{x^2+8x+16}{x^2-16}=\frac{(x+4)^2}{(x-4)(x+4)}=\frac{x+4}{x-4}$
c. $A=3\Leftrightarrow \frac{x+4}{x-4}=3$
$\Rightarrow x+4=3(x-4)$
$\Leftrightarrow -2x+16=0$
$\Leftrightarrow x=8$ (tm)
d.
$A=0\Leftrightarrow \frac{x+4}{x-4}=0\Leftrightarrow x+4=0\Leftrightarrow x=-4$
Mà theo ĐKXĐ thì $x\neq \pm 4$ nên không tồn tại $x$ để $A=0$
a) Ta có BCNN(12, 16) = 48. Hãy viết tập hợp A các bội của 48. Nhận xét về tập hợp BC(12, 16) và tập hợp A.
b) Để tìm tập hợp bội chung của hai số tự nhiên a và b, ta có thể tìm tập hợp các bội của BCNN(a, b). Hãy vận dụng để tìm tập hợp các bội chung của:
i. 24 và 30; ii. 42 và 60;
iii. 60 và 150; iv. 28 và 35.
a) A = {0; 48; 96; 144, 192;...}
* Nhận xét: Tập hợp BC(12, 16) chính là tập hợp A.
b)
i. 24 = 23.3; 30 = 2.3.5
=> BCNN(24,30) = 23. 3.5= 120
=> BC(24, 30) = B(120) = {0; 120; 240; 360;...}
ii. 42 = 2.3.7; 60 = 22.3.5
=> BCNN(42, 60) = 420
=> BC(42, 60) = B(420) = {0; 420, 840; 1260;…}.
iii. 60 = 22.3.5
150 = 2.3.52
=> BCNN(60, 150) = 22.3.52 = 300
=> BC(60, 150) = B(300) = {0; 300, 600, 900, 1200;...}.
iv. 28 = 22.7; 35 = 5.7
=> BCNN(28, 35) = 22.5.7 = 140
=> BC(28, 35) = B(140) = {0; 140; 280; 420, 560;...}.
tìm số nguyên a để a+16 ; a-73 là số chính phương
Câu 16/ Tìm a để x3 + 3x2 – 5x + a chia hết cho x – 1
A. a = 0
B. a = 1
C. a = -1
D. a = 2
Câu 16/ Tìm a để x3 + 3x2 – 5x + a chia hết cho x – 1
A. a = 0
B. a = 1
C. a = -1
D. a = 2
Lời giải:
$x^3+3x^2-5x+a=x^2(x-1)+4x(x-1)-(x-1)+(a-1)=(x-1)(x^2+4x-1)+(a-1)$
Vậy $x^3+3x^2-5x+a$ chia $x-1$ dư $a-1$. Để đây là phép chia hết thì $a-1=0$
$\Leftrightarrow a=1$
Đáp án B.