chứng minh p/s \(\dfrac{b}{a-b}\)là p/s tối giản biết p/s \(\dfrac{a}{b}\)tối giản
Cho phân số \(\dfrac{a}{b}\) tối giản . Chứng minh : \(\dfrac{a+b}{b}\) cũng tối giản ?
Gọi ƯCLN(b,a+b)=d(a,a+b)=d (d ∈∈N*)
⇒⇒ b ⋮d ; a+b ⋮d
⇒⇒ b ⋮d ; a⋮d
Vì \(\dfrac{a}{b}\)tối giản nên ⇒⇒ d= 1
Vậy nếu \(\dfrac{a}{b}\) tối giản thì \(\dfrac{a+b}{b}\) tối giản
chứng minh nếu \(\dfrac{a}{b}\) tối giản thì \(\dfrac{\text{5a+3b}}{13a+8b}\) tối giản
Cho phân số \(\dfrac{a}{b}\) chưa tối giản . Chứng minh rằng phân số \(\dfrac{a+b}{b}\) chưa tối giản \(\left(a,b\in Z,b\ne0\right)\)
\(\dfrac{a}{b}\) chưa tối giản
→a⋮b.
vì a⋮b và b⋮b
→a+b⋮b
→\(\dfrac{a+b}{b}\) chưa tối giản (ĐPCM)
cho \(\dfrac{a}{b}\) là phân số tối giản .chứng minh rằng \(\dfrac{a}{a+b}\) tối giản
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
Biết \(\lim\limits_{x->+\infty}\) \(\left(\sqrt{25x^2+4\sqrt{2}+5}-5x\right)=\dfrac{a\sqrt{b}}{c}\) trong đó a,b,c là các số nguyên duơng, phân số \(\dfrac{a}{c}\) tối giản và \(a>1\). Tính \(S=a^2+b^2+c^2\)
chứng minh rằng với \(n\in Z\)thì :
a) \(\frac{n+3}{n+3}\) là P/S tối giản
b)\(\frac{n+3}{2n+3}\) là P/S tối giản
a, \(\frac{n+3}{n+3}=1\) mà \(n\in Z\) nên \(\frac{n+3}{n+3}=\pm1\)
=> n + 3/n+ 3 là PSTG
|
Bài 2: Đúng ghi Đ, sai ghi S.
a) \(\dfrac{13}{39};\dfrac{3}{5};\dfrac{22}{33}\) đều là phân số tối giản.
b) Phân số \(\dfrac{5}{10}\) có thể viết thành phép chia 10 : 5
cho biết tập hợp các giá trị của tham số để phương trình \(2\left(x^2+\dfrac{1}{x^2}\right)-3\left(x+\dfrac{1}{x}\right)-2m-1=0\)
có nghiệm là S = \(\left[\dfrac{-b}{a};+\infty\right]\)
với a, b là các số nguyên dương a/b là phân số tối giản. Tính a + b