Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
miriru
Xem chi tiết
Nguyễn Tấn Dũng
Xem chi tiết
Đức Hạnh
Xem chi tiết
Đức Hạnh
9 tháng 5 2021 lúc 18:28

giúp mình câu b với các bạn ơi

 

Nguyễn Diệp Ngọc Ánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 12 2023 lúc 18:42

a: Xét tứ giác ADHK có

\(\widehat{ADH}+\widehat{AKH}=90^0+90^0=180^0\)

=>ADHK là tứ giác nội tiếp

Xét tứ giác BDKC có \(\widehat{BDC}=\widehat{BKC}=90^0\)

nên BDKC là tứ giác nội tiếp

b: Xét (O) có

\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{xAC}=\widehat{ABC}\)

mà \(\widehat{ABC}=\widehat{AKD}\left(=180^0-\widehat{DKC}\right)\)

nên \(\widehat{xAC}=\widehat{AKD}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên Ax//DK

c: Xét ΔABC có

BK,CD là các đường cao

BK cắt CD tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại M

Xét tứ giác HKCM có \(\widehat{HKC}+\widehat{HMC}=90^0+90^0=180^0\)

nên HKCM là tứ giác nội tiếp

=>\(\widehat{HKM}=\widehat{HCM}\)

mà \(\widehat{HCM}=\widehat{BAM}\left(=90^0-\widehat{ABM}\right)\)

nên \(\widehat{HKM}=\widehat{BAM}\)

mà \(\widehat{BAM}=\widehat{DKB}\)(ADHK là tứ giác nội tiếp)

nên \(\widehat{DKH}=\widehat{MKH}\)

=>\(\widehat{DKB}=\widehat{MKB}\)

=>KB là phân giác của góc DKM

Nguyễn Văn Nghị
1 tháng 1 lúc 20:38

a: Xét tứ giác ADHK có

ˆADH+ˆAKH=900+900=1800���^+���^=900+900=1800

=>ADHK là tứ giác nội tiếp

Xét tứ giác BDKC có ˆBDC=ˆBKC=900���^=���^=900

nên BDKC là tứ giác nội tiếp

b: Xét (O) có

ˆxAC���^ là góc tạo bởi tiếp tuyến Ax và dây cung AC

ˆABC���^ là góc nội tiếp chắn cung AC

Do đó: ˆxAC=ˆABC���^=���^

mà ˆABC=ˆAKD(=1800−ˆDKC)���^=���^(=1800−���^)

nên ˆxAC=ˆAKD���^=���^

mà hai góc này là hai góc ở vị trí đồng vị

nên Ax//DK

c: Xét ΔABC có

BK,CD là các đường cao

BK cắt CD tại H

Do đó: H là trực tâm của ΔABC

=>AH⊥⊥BC tại M

Xét tứ giác HKCM có ˆHKC+ˆHMC=900+900=1800���^+���^=900+900=1800

nên HKCM là tứ giác nội tiếp

=>ˆHKM=ˆHCM���^=���^

mà ˆHCM=ˆBAM(=900−ˆABM)���^=���^(=900−���^)

nên ˆHKM=ˆBAM���^=���^

mà ˆBAM=ˆDKB���^=���^(ADHK là tứ giác nội tiếp)

nên ˆDKH=ˆMKH���^=���^

=>ˆDKB=ˆMKB���^=���^

=>KB là phân giác của góc DKM

Dũng Nguyễn tiến
Xem chi tiết
Lê Thị Thục Hiền
7 tháng 6 2021 lúc 12:52

a) Có \(\widehat{BFC}=\widehat{CKB}=90^0\)

=> Tứ giác BCFK nội tiếp

b)Có \(\widehat{BCK}=\widehat{BFK}\)( vì tứ giác BCFK nội tiếp )

mà \(\widehat{BCE}=\widehat{BDE}=\dfrac{1}{2}sđ\stackrel\frown{EB}\)

=> \(\widehat{BFK}=\widehat{BDE}\) mà hai góc nằm ở vị trí hai góc đồng vị

=> KF//DE

Hoàng Thị Mơ
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 3 2023 lúc 10:48

Bạn ghi lại đề đi bạn. Đề khó hiểu quá!

Hiển Bùi
Xem chi tiết
Trung Anh
15 tháng 3 2022 lúc 21:42

lx

Hoàng Minh Hằng
15 tháng 3 2022 lúc 21:42

lỗi 

Linh Kiu's
Xem chi tiết
Anh Quynh
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 12 2021 lúc 21:31

\(a,\widehat{ACM}=90^0\) (góc nt chắn nửa đg tròn)

\(b,\widehat{BAH}+\widehat{ABH}=90^0;\widehat{OAC}+\widehat{AMC}=90^0\left(\widehat{ACM}=90^0\right)\)

Mà \(\widehat{ABH}=\widehat{AMC}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\)

Do đó \(\widehat{BAH}=\widehat{OAC}\)

Tuấn Hoàng
Xem chi tiết
I
1 tháng 4 2022 lúc 21:46

undefined

a)

xét tứ giác AEHF có :

AEH = 900 (BE là đường cao của B trên AC )

AFH = 900 (CF là dường cao của C trên AB )

ta có ; AEH + AFH = 1800 mà 2 góc này ở vị trí đối nhau 

==> tứ giác AEHF nội tiếp 

xét tứ AEDB có :

AEB = 900 (BE là dường cao của B trên AC )

ADB = 900 (AD là đường cao của A trên BD )

mà 2 góc này cùa nhìn cạnh AB dưới một góc vuông 

==> tứ giác AEDB nội tiếp

câu b vì mình ko hiểu đường cao của đường tròn là gì :/